

Python Pocket Reference

Table of Contents

SPECIAL OFFER: Upgrade this ebook with O’Reilly

1. Python Pocket Reference

Introduction

Conventions

Using Code Examples

Safari® Books Online

Command-Line Options

Python Options

Program Specification

Environment Variables

Operational Variables

Command-Line Option Variables

Built-in Types and Operators

Operators and Precedence

Operator Usage Notes

Operations by Category

Sequence Operation Notes

Specific Built-in Types

Numbers

Strings

Unicode Strings

Lists

Dictionaries

Tuples

Files

Sets

Other Common Types

Type Conversions

Statements and Syntax

Syntax Rules

Name Rules

Specific Statements

The Assignment Statement

The Expression Statement

The print Statement

The if Statement

The while Statement

The for Statement

The pass Statement

The break Statement

The continue Statement

The del Statement

The def Statement

The return Statement

The yield Statement

The global Statement

The nonlocal Statement

The import Statement

The from Statement

The class Statement

The try Statement

The raise Statement

The assert Statement

The with Statement

Python 2.X Statements

Namespace and Scope Rules

Qualified Names: Object Namespaces

Unqualified Names: Lexical Scopes

Statically Nested Scopes

Object-Oriented Programming

Classes and Instances

Pseudoprivate Attributes

New Style Classes

Operator Overloading Methods

For All Types

For Collections (Sequences, Mappings)

For Numbers (Binary Operators)

For Numbers (Other Operations)

For Descriptors

For Context Managers

Python 2.X Operator Overloading Methods

Built-in Functions

Python 2.X Built-in Functions

Built-in Exceptions

Superclasses (Categories)

Specific Exceptions Raised

Warning Category Exceptions

Warnings Framework

Python 2.X Built-in Exceptions

Built-in Attributes

Standard Library Modules

The sys Module

The string Module

Module Functions and Classes

Constants

The os System Module

Administrative Tools

Portability Constants

Shell Commands

Environment Tools

File Descriptor Tools

File Pathname Tools

Process Control

The os.path Module

The re Pattern-Matching Module

Module Functions

Regular Expression Objects

Match Objects

Pattern Syntax

Object Persistence Modules

dbm and shelve Modules

pickle Module

The tkinter GUI Module and Tools

tkinter Example

tkinter Core Widgets

Common Dialog Calls

Additional tkinter Classes and Tools

Tcl/Tk-to-Python/tkinter Mappings

Internet Modules and Tools

Commonly Used Library Modules

Other Standard Library Modules

The math Module

The time Module

The datetime Module

Threading Modules

Binary Data Parsing

Python Portable SQL Database API

API Usage Example

Module Interface

Connection Objects

Cursor Objects

Type Objects and Constructors

Python Idioms and Hints

Core Language Hints

Environment Hints

Usage Hints

Assorted Hints

Index

SPECIAL OFFER: Upgrade this ebook with O’Reilly

Python Pocket Reference

Mark Lutz

Editor

Julie Steele

Copyright © 2009 Mark Lutz

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are also available for most titles (http://my.safaribooksonline.com). For more information, contact our corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of O’Reilly Media, Inc. The Pocket Reference series designations, Python Pocket Reference, the image of a rock python, and related trade dress are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and author assume no responsibility for errors or omissions, or for damages resulting from the use of the information contained herein.

[image:]

O'Reilly Media

SPECIAL OFFER: Upgrade this ebook with O’Reilly

Click here for more information on this offer!

Chapter 1. Python Pocket Reference

Introduction

Python is a general-purpose, object-oriented, and open source computer programming language. It is commonly used for both standalone programs and scripting applications in a wide variety of domains, by hundreds of thousands of developers.

Python is designed to optimize developer productivity, software quality, program portability, and component integration. Python programs run on most platforms in common use, including mainframes and supercomputers, Unix and Linux, Windows and Macintosh, Java and .NET, and more.

This pocket reference summarizes Python types and statements, special method names, built-in functions and exceptions, commonly used standard library modules, and other prominent Python tools. It is intended to serve as a concise reference tool for developers and is designed to be a companion to other books that provide tutorials, code examples, and other learning materials.

This fourth edition covers both Python versions 3.0 and 2.6, and later releases in the 3.X and 2.X lines. This edition is focused primarily on Python 3.0, but also documents differences in Python 2.6, and so applies to both versions. It has been thoroughly updated for recent language and library changes and expanded for new language tools and topics.

This edition also incorporates notes about prominent enhancements in the imminent Python 3.1 release, which is intended to subsume Python 3.0 (in this book, Python 3.0 generally refers to the language variations introduced by 3.0 but present in the entire 3.X line). Much of this edition applies to earlier Python releases as well, with the exception of recent language extensions.

Conventions

The following conventions are used in this book:

[]

Items in brackets are usually optional. The exceptions are those cases where brackets are part of Python’s syntax.

*

Something followed by an asterisk can be repeated zero or more times.

a
|
b

Items separated by a bar are often alternatives.

Italic

Used for filenames and URLs and to highlight new terms.

Constant width

Used for code, commands, and command-line options, and to indicate the names of modules, functions, attributes, variables, and methods.

Constant width italic

Used for replaceable parameter names in command syntax.

Using Code Examples

This book is here to help you get your job done. In general, you may use the code in this book in your programs and documentation. You do not need to contact us for permission unless you’re reproducing a significant portion of the code. For example, writing a program that uses several chunks of code from this book does not require permission. Selling or distributing a CD-ROM of examples from O’Reilly books does require permission. Answering a question by citing this book and quoting example code does not require permission. Incorporating a significant amount of example code from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title, author, publisher, and ISBN. For example: “Python Pocket Reference, Fourth Edition, by Mark Lutz. Copyright 2010 Mark Lutz, 978-0-596-15808-8.”

If you feel your use of code examples falls outside fair use or the permission given above, feel free to contact us at permissions@oreilly.com.

Safari® Books Online

Note

Safari® Books Online is an on-demand digital library that lets you easily search over 7,500 technology and creative reference books and videos to find the answers you need quickly.

With a subscription, you can read any page and watch any video from our library online. Read books on your cell phone and mobile devices. Access new titles before they are available for print, and get exclusive access to manuscripts in development and post feedback for the authors. Copy and paste code samples, organize your favorites, download chapters, bookmark key sections, create notes, print out pages, and benefit from tons of other time-saving features.

O’Reilly Media has uploaded this book to the Safari® Books Online service. To have full digital access to this book and others on similar topics from O’Reilly and other publishers, sign up for free at http://my.safaribooksonline.com.

Command-Line Options

Command lines are used to launch Python programs from a system shell prompt. Command-line options intended for Python itself appear before the specification of the program code to be run. Options intended for the code to be run appear after the program specification. Command lines have the following format:
python [option*]
 [scriptfilename | -c command | -m module | -] [arg*]

Python Options

-b

Issues warnings for calling str() with a bytes or bytearray object, and comparing a bytes or bytearray with a str. Option -bb issues errors instead.

-B

Do not write .pyc or .pyo byte-code files on imports.

-d

Turns on parser debugging output (for developers of the Python core).

-E

Ignores Python environment variables described ahead (such as PYTHONPATH).

-h

Prints help message and exit.

-i

Enters interactive mode after executing a script. Useful for postmortem debugging.

-O

Optimizes generated byte-code (create and use .pyo byte-code files). Currently yields a minor performance improvement.

-OO

Operates like -O, the previous option, but also removes docstrings from byte-code.

-s

Do not add the user site directory to the sys.path module search path.

-S

Do not imply “import site” on initialization.

-u

Forces stdout and stderr to be unbuffered and binary.

-v

Prints a message each time a module is initialized, showing the place from which it is loaded; repeats this flag for more verbose output.

-V

Prints Python version number and exit.

-W
arg

Functions as warning control; arg takes the form action:message:category:module:lineno. See warnings module documentation in the Python Library Reference manual (available at http://www.python.org/doc/).

-x

Skips first line of source, allowing use of non-Unix forms of #!cmd.

Program Specification

scriptfilename

Denotes the name of a Python scriptfile to execute as the main, topmost file of a program execute (e.g., python main.py). The script’s name is made available in sys.argv[0].

-c
command

Specifies a Python command (as a string) to execute (e.g., python -c "print('spam' * 8)" runs a print call). sys.argv[0] is set to -c.

-m
module

Runs library module as a script: searches for module on sys.path, and runs it as a top-level file (e.g., python -m profile runs the Python profiler located in a standard library directory). sys.argv[0] is set to the module’s full path name.

−

Reads Python commands from stdin (the default); enters interactive mode if stdin is a tty (interactive device). sys.argv[0] is set to −.

arg*

Indicates that anything else on the command line is passed to the scriptfile or command (and appears in the built-in list of strings sys.argv[1:]).

If no scriptfilename, command, or module is given, Python enters interactive mode, reading commands from stdin (and using GNU readline, if installed, for input).

Besides using traditional command lines at a system shell prompt, you can also generally start Python programs by clicking their filenames in a file explorer GUI, by calling functions in the Python/C API, by using program launch menu options in IDEs such as IDLE, Komodo, Eclipse, NetBeans, and so on.

Note

Python 2.6 does not support the -b option, which is related to Python 3.0’s string type changes. It supports additional options:

	-t issues warnings for inconsistent mixtures of tabs and spaces in indentation (-tt issues errors instead). Python 3.0 always treats such mixtures as syntax errors.

	-Q division-related options: -Qold (the default), -Qwarn,
-Qwarnall, and –Qnew. These are subsumed by the new true division behavior of Python 3.0.

	−3 issues warnings about any Python 3.X incompatibilities in code.

Environment Variables

Environment variables are system-wide settings that span programs and are used for global configuration.

Operational Variables

PYTHONPATH

Augments the default search path for imported module files. The format is the same as the shell’s PATH setting: directory pathnames separated by colons (semicolons on Windows). On module imports, Python searches for the corresponding file or directory in each listed directory, from left to right. Merged into sys.path.

PYTHONSTARTUP

If set to the name of a readable file, the Python commands in that file are executed before the first prompt is displayed in interactive mode.

PYTHONHOME

If set, the value is used as an alternate prefix directory for library modules (or sys.prefix, sys.exec_prefix). The default module search path uses sys.prefix/lib.

PYTHONCASEOK

If set, ignores case in import statements (on Windows).

PYTHONIOENCODING

encodingname[:errorhandler] override used for stdin, stdout, and stderr streams.

Command-Line Option Variables

PYTHONDEBUG

If nonempty, same as -d option.

PYTHONDONTWRITEBYTECODE

If nonempty, same as -B option.

PYTHONINSPECT

If nonempty, same as -i option.

PYTHONNOUSERSITE

If nonempty, same as -s option.

PYTHONOPTIMIZE

If nonempty, same as -O option.

PYTHONUNBUFFERED

If nonempty, same as -u option.

PYTHONVERBOSE

If nonempty, same as -v option.

Built-in Types and Operators

Operators and Precedence

Table 1-1 lists Python’s expression operators. Operators in the lower cells of this table have higher precedence (i.e., bind tighter) when used in mixed-operator expressions without parentheses.

Table 1-1. Python 3.0 expression operators and precedence

	
Operator

	
Description

	
yield X

	
Generator function send() protocol

	
lambda args: expr

	
Anonymous function maker

	
X if Y else Z

	
Ternary selection (X is evaluated only if Y is true)

	
X or Y

	
Logical OR: Y is evaluated only if X is false

	
X and Y

	
Logical AND: Y is evaluated only if X is true

	
not X

	
Logical negation

	
X in Y, X not in Y

	
Membership: iterables, sets

	
X is Y, X is not Y

	
Object identity tests

	
X < Y, X <= Y, X > Y, X >= Y

	
Magnitude comparisons, set subset and superset

	X == Y, X != Y
	Equality operators

	
X | Y

	
Bitwise OR, set union

	
X ^ Y

	
Bitwise exclusive OR, set symmetric difference

	
X & Y

	
Bitwise AND, set intersection

	
X << Y, X >> Y

	
Shift X left, right by Y bits

	
X + Y, X – Y

	
Addition/concatenation, subtraction/set difference

	
X * Y, X % Y,

X / Y, X // Y

	
Multiplication/repetition, remainder/format, division, floor division

	
-X, +X

	
Unary negation, identity

	
˜X

	
Bitwise NOT complement (inversion)

	
X ** Y

	
Power (exponentiation)

	
X[i]

	
Indexing (sequence, mapping, others)

	
X[i:j:k]

	
Slicing (all bounds optional)

	
X(...)

	
Call (function, method, class, other callable)

	
X.attr

	
Attribute reference

	
(...)

	
Tuple, expression, generator expression

	
[...]

	
List, list comprehension

	
{...}

	
Dictionary, set, dictionary and set comprehension

Operator Usage Notes

	In Python 2.6, value inequality can be written as either X != Y or X <> Y. In Python 3.0, the latter of these options is removed because it is redundant.

	In Python 2.6, a backquotes expression `X` works the same as repr(X), and converts objects to display strings. In Python 3.0, use the more readable str() and repr() built-in functions instead.

	In both Python 3.0 and 2.6, the X // Y
floor division expression always truncates fractional remainders, and returns an integer result for integers.

	The X / Y expression performs true division in 3.0 (always retaining remainders in a floating-point result), and classic division in 2.6 (truncating remainders for integers).

	The syntax [...] is used for both list literals and list comprehension expressions. The latter of these performs an implied loop and collects expression results in a new list.

	The syntax (...) is used for tuples and expressions, as well as generator expressions—a form of list comprehension that produces results on demand, instead of building a result list. Parenthesis may sometimes be omitted in all three constructs.

	The syntax {...} is used for dictionary literals. In Python 3.0, it is also used for set literals, and both dictionary and set comprehensions; use set() and looping statements in 2.6.

	The yield and ternary if/else selection expressions are available in Python 2.5 and later. The former returns send() arguments in generators; the latter is a shorthand for a multiline if statement. yield requires parentheses if not alone on the right side of an assignment statement.

	Comparison operators may be chained: X < Y < Z produces the same result as X < Y and Y < X, but Y is evaluated only once in the chained form.

	The slice expression X[I:J:K] is equivalent to indexing with a slice object: X[slice(I, J, K)].

	In Python 2.6, magnitude comparisons of mixed types are allowed—converting numbers to a common type, and ordering other mixed types according to the type name. In Python 3.0, nonnumeric mixed-type magnitude comparisons are not allowed, and raise exceptions; this includes sorts by proxy.

	Magnitude comparisons for dictionaries are also no longer supported in Python 3.0 (though equality tests are); comparing sorted(dict.items()) is one possible replacement in 3.0.

	Call expressions allow for positional and keyword arguments, and arbitrarily large numbers of both; see The Expression Statement and The def Statement for call syntax.

	Python 3.0 allows ellipsis (literally, ...) to be used as an atomic expression anywhere in source code. This may be used as an alternative to pass or None in some contexts (e.g., stubbed-out function bodies, type-independent variable initialization).

Operations by Category

All built-in types support the comparisons and Boolean operations listed in Table 1-2.

Boolean true means any nonzero number or any nonempty collection object (list, dictionary, etc.). The built-in names True and False are pre-assigned to true and false values and behave like integers 1 and 0 with custom display formats. The special object None is false.

Comparisons return True or False and are applied recursively in compound objects as needed to determine a result.

Boolean and and or operators stop (short-circuit) as soon as a result is known and return one of the two operand objects (on left or right).

Table 1-2. Comparisons and Boolean operations

	
Operator

	
Description

	
X < Y

	
Strictly less than[a]

	
X <= Y

	
Less than or equal to

	
X > Y

	
Strictly greater than

	
X >= Y

	
Greater than or equal to

	
X == Y

	
Equal to (same value)

	
X != Y

	
Not equal to (same as X<>Y in Python 2.6 only)[b]

	
X is Y

	
Same object

	
X is not Y

	
Negated object identity

	
X < Y < Z

	
Chained comparisons

	
not X

	
If X is false then True; else, False

	
X or Y

	
If X is false then Y; else, X

	
X and Y

	
If X is false then X; else, Y

	

[a] To implement comparison expressions, see both the rich comparison (e.g., __lt__ for <) class methods in 3.0 and 2.6, and general __cmp__ method in 2.6, described in the section Operator Overloading Methods.

[b] != and <> both mean not equal by value in 2.6, but != is the preferred syntax in 2.6, and the only supported option in 3.0. is performs an identity test; == performs value comparison, and so is much more generally useful.

Tables 1-3 through 1-6 define operations common to types in the three major type categories (sequence, mapping, and number), as well as operations available for mutable (changeable) types in Python. Most types also export additional type-specific operations (e.g., methods), as described in the section Specific Built-in Types.

Table 1-3. Sequence operations (strings, lists, tuples, bytes, bytearray)

	
Operation

	
Description

	
Class method

	
X in S

X not in S

	
Membership tests

	
__contains__,

__iter__,

__getitem__[a]

	
S1 + S2

	
Concatenation

	
__add__

	
S * N, N * S

	
Repetition

	
__mul__

	
S[i]

	
Index by offset

	
__getitem__

	
S[i:j], S[i:j:k]

	
Slicing: items in S from offset i through j-1 by optional stride k

	
__getitem__[b]

	
len(S)

	
Length

	
__len__

	
min(S), max(S)

	
Minimum, maximum item

	
__iter__,

__getitem__

	
iter(S)

	
Iteration protocol

	
__iter__

	
for X in S:,

[expr for X in S],

map(func, S), etc.

	
Iteration (all contexts)

	
__iter__,

__getitem__

	

[a] See also iterators, generators, and the __iter__ class method (see the section The yield Statement). If defined, __contains__ is preferred over __iter__, and __iter__ is preferred over __getitem__.

[b] In Python 2.6, you may also define __getslice__, __setslice__, and __delslice__ to handle slicing operations. In 3.0, these are removed in favor of passing slice objects to their item-based indexing counterparts. Slice objects may be used explicitly in indexing expressions in place of i:j:k bounds.

Table 1-4. Mutable sequence operations (lists, bytearray)

	
Operation

	
Description

	
Class method

	
S[i] = X

	
Index assignment: change item at existing offset i

	
__setitem__

	
S[i:j] = S2,

S[i:j:k] = S2

	
Slice assignment: S from i to j is replaced by S2, with optional stride k

	
__setitem__

	
del S[i]

	
Index deletion

	
__delitem__

	
del S[i:j],

del S[i:j:k]

	
Slice deletion

	
__delitem__

Table 1-5. Mapping operations (dictionaries)

	
Operation

	
Description

	
Class method

	
D[k]

	
Index by key

	
__getitem__

	
D[k] = X

	
Key assignment: change or create entry for key k

	
__setitem__

	
del D[k]

	
Delete item by key

	
__delitem__

	
len(D)

	
Length (number of keys)

	
__len__

	
k in D

	
Key membership test[a]

	
Same as in Table 1-3

	
k not in D

	
Converse of k in D

	
Same as in Table 1-3

	
iter(S)

	
Iterator object for keys

	
Same as in Table 1-3

	
for k in D:, etc.

	
Iterate through keys in D (all iteration contexts)

	
Same as in Table 1-3

	

[a] In Python 2.X, key membership may also be coded as D.has_key(K). This method is removed in Python 3.0 in favor of the in expression, which is also generally preferred in 2.6. See Dictionaries.

Table 1-6. Numeric operations (all number types)

	
Operation

	
Description

	
Class method

	
X + Y, X – Y

	
Add, subtract

	
__add__, __sub__

	
X * Y, X / Y,

X // Y, X % Y

	
Multiply, divide, floor divide, remainder

	
__mul__, __truediv__,

__floordiv__, __mod__

	
-X, +X

	
Negative, identity

	
__neg__, __pos__

	
X | Y, X & Y,

X ^ Y

	
Bitwise OR, AND, exclusive OR (integers)

	
__or__, __and__, __xor__

	
X << N, X >> N

	
Bitwise left-shift, right-shift (integers)

	
__lshift__, __rshift__

	
˜X

	
Bitwise invert (integers)

	
__invert__

	
X ** Y

	
X to the power Y

	
__pow__

	
abs(X)

	
Absolute value

	
__abs__

	
int(X)

	
Convert to integer[a]

	
__int__

	
float(X)

	
Convert to float

	
__float__

	
complex(X), complex(re,im)

	
Make a complex value

	
__complex__

	
divmod(X, Y)

	
Tuple: (X/Y, X%Y)

	
__divmod__

	
pow(X, Y [,Z])

	
Raise to a power

	
__pow__

	

[a] In Python 2.6, the long() built-in function invokes the __long__ class method. In Python 3.0, the int type subsumes long, which is removed.

Sequence Operation Notes

Indexing: S[i]

	Fetches components at offsets (first item is at offset 0).

	Negative indexes mean to count backward from the end (last item is at offset −1).

	S[0] fetches the first item.

	S[−2] fetches the second-to-last item (S[len(S) − 2]).

Slicing: S[i:j]

	Extracts contiguous sections of a sequence.

	Slice boundaries default to 0 and sequence length.

	S[1:3] fetches from offsets 1 up to, but not including, 3.

	S[1:] fetches from offsets 1 through the end (length-1).

	S[:−1] fetches from offsets 0 up to, but not including, the last item.

	S[:] makes a top-level (shallow) copy of sequence object S.

	Slice assignment is similar to deleting and then inserting.

Slicing: S[i:j:k]

	If present, the third item k is a stride: added to the offset of each item extracted.

	S[::2] is every other item in sequence S.

	S[::−1] is sequence S reversed.

	S[4:1:−1] fetches from offsets 4 up to, but not including, 1, reversed.

Other

	Concatenation, repetition, and slicing return new objects (not always for tuples).

Specific Built-in Types

This section covers numbers, strings, lists, dictionaries, tuples, files, and other core built-in types. Compound datatypes (e.g., lists, dictionaries, and tuples) can nest inside each other arbitrarily and as deeply as required. Sets may participate in nesting as well, but may contain only immutable objects.

Numbers

This section covers basic number types (integers, floating-point), as well as more advanced types (complex, decimals, and fractions). Numbers are always immutable (unchangeable).

Literals and creation

Numbers are written in a variety of numeric constant forms.

1234, −24, 0

Integers (unlimited precision)[1]

1.23, 3.14e-10, 4E210, 4.0e+210, 1., .1

Floating-point (normally implemented as C doubles in CPython)

0o177, 0x9ff, 0b1111

Octal, hex, and binary literals for integers[2]

3+4j, 3.0+4.0j, 3J

Complex numbers

decimal.Decimal('1.33'), fractions.Fraction(4, 3)

Module-based types: decimal, fraction

int(), float(), complex()

Create numbers from other objects, or from strings with possible base conversion; see Built-in Functions

Operations

Number types support all number operations (see Table 1-6). In mixed-type expressions, Python converts operands up to the type of the “highest” type, where integer is lower than floating-point, which is lower than complex. As of Python 3.0 and 2.6, integer and floating-point objects also have a handful of methods and other attributes; see Python’s Library Reference manual for details.
>>> (2.5).as_integer_ratio() # float attributes
(5, 2)
>>> (2.5).is_integer()
False

>>> (2).numerator, (2).denominator # int attributes
(2, 1)
>>> (255).bit_length(), bin(255) # 3.1+ bit_length()
(8, '0b11111111')

Decimal and fraction

Python provides two additional numeric types in standard library modules—decimal is a fixed-precision floating-point number, and fraction is a rational type that keeps numerator and denominator explicitly. Both may be used to address inaccuracies of floating-point arithmetic.
>>> 0.1 - 0.3
-0.19999999999999998

>>> from decimal import Decimal
>>> Decimal('0.1') - Decimal('0.3')
Decimal('-0.2')

>>> from fractions import Fraction
>>> Fraction(1, 10) - Fraction(3, 10)
Fraction(-1, 5)

>>> Fraction(1, 3) + Fraction(7, 6)
Fraction(3, 2)

Fractions automatically simplify results. By fixing precision and supporting various truncation and rounding protocols, decimals are useful for monetary applications. See the Python Library Reference for details.

Other numeric types

Python also includes a set type (described in Sets). Additional numeric types such as vectors and matrixes are available as third-party open source extensions (e.g., see the NumPy package). The third-party domain also includes support for visualization, statistical packages, and more.

Strings

The normal str string object is an immutable (i.e., unchangeable) array of characters, accessed by offset. As of Python 3.0, there are three string types with very similar interfaces:

	str, an immutable sequence of characters, used for all text, both ASCII and wider Unicode

	bytes, an immutable sequence of short integers, used for binary byte data

	bytearray, a mutable variant of bytes

Python 2.X instead has two immutable string types: str, for 8-bit text and binary data, and unicode, for Unicode text as described in Unicode Strings. Python 2.6 also has the Python 3.0 bytearray type as a back-port from 3.0, but it does not impose as sharp a distinction between text and binary data (it may be mixed with text strings freely in 2.6).

Most of this section pertains to all string types, but see String methods, Unicode Strings, and Built-in Functions for more on bytes and bytearray.

Literals and creation

Strings are written as a series of characters in quotes, optionally preceded with a designator character.

"Python's", 'Python"s'

Double and single quotes work the same, and each can embed unescaped quotes of the other kind.

"""This is a multiline block"""

Triple-quoted blocks collect lines into a single string, with end-of-line markers (\n) inserted between the original lines.

'Python\'s\n'

Backslash escape code sequences (see Table 1-7) are replaced with the special-character byte values they represent (e.g., '\n' is a byte with binary value 10 decimal).

"This" "is" "concatenated"

Adjacent string constants are concatenated. May span lines if parenthesized.

r'a raw\string', R'another\one'

Raw strings: backslashes are retained literally (except at the end of a string). Useful for regular expressions and DOS directory paths: e.g., r'c:\dir1\file'.

The following literal forms make specialized strings described in Unicode Strings:

b'...'

bytes
string literal: sequence of 8-bit byte values representing raw binary data. Makes a bytes string in Python 3.0, and a normal str string in Python 2.6 (for 3.0 compatibility). See String methods, Unicode Strings, and Built-in Functions.

bytearray(...)

bytearray
string construction: a mutable variant of bytes. Available in both Python 2.6 and 3.0. See String methods, Unicode Strings, and Built-in Functions.

u'...'

Unicode string literal in Python 2.X only (normal str strings support Unicode text in Python 3). See Unicode Strings.

str(), bytes(), bytearray()

Create strings from objects, with possible Unicode encoding/decoding in Python 3.0. See Built-in Functions.

hex(), oct(), bin()

Create hex/octal/binary digit strings from numbers. See Built-in Functions.

String literals may contain escape sequences taken from Table 1-7 to represent special bytes.

Table 1-7. String constant escape codes

	
Escape

	
Meaning

	
Escape

	
Meaning

	
\newline

	
Ignored continuation

	
\t

	
Horizontal tab

	
\\

	
Backslash (\)

	
\v

	
Vertical tab

	
\'

	
Single quote (')

	
\N{id}

	
Unicode dbase id

	
\"

	
Double quote (")

	
\uhhhh

	
Unicode 16-bit hex

	
\a

	
Bell

	
\Uhhhhhhhh

	
Unicode 32-bit hex[a]

	
\b

	
Backspace

	
\xhh

	
Hex (at most 2 digits)

	
\f

	
Formfeed

	
\ooo

	
Octal (up to 3 digits)

	
\n

	
Linefeed

	
\0

	
Null (not end of string)

	
\r

	
Carriage return

	
\other

	
Not an escape

	

[a] \Uhhhhhhhh takes exactly eight hexadecimal digits (h); both \u and \U can be used only in Unicode string literals.

Operations

All string types support all mutable sequence operations (shown earlier in Table 1-3), plus string method calls (described ahead). In addition, the str type supports % string formatting expressions and template substitution, and the bytearray type supports mutable sequence operations (Table 1-4, plus extra list-like methods). Also see the re string pattern-matching module in The re Pattern-Matching Module, and string-related built-in functions in the section Built-in Functions.

String formatting

In both Python 2.6 and 3.0, normal str strings support two different flavors of string formatting—operations that format objects according to format description strings:

	The original expression, coded with the % operator: fmt % (values)

	The new method, coded with call syntax: fmt.format(values)

Both produce new strings based on possibly type-specific substitution codes. Their results may be displayed or assigned to variables for later use:
>>> '%s, %s, %.2f' % (42, 'spam', 1 / 3.0)
'42, spam, 0.33'

>>> '{0}, {1}, {2:.2f}'.format(42, 'spam', 1 / 3.0)
'42, spam, 0.33'

Although the method call seems to be more actively evolving as these words are being written, the expression is used extensively in existing code, and both forms are still fully supported. Moreover, although some view the method form as marginally more mnemonic and consistent, the expression is often simpler and more concise. As these two forms are largely just minor variations on a theme of equivalent functionality and complexity, there is today no compelling reason to recommend one over the other.

String formatting expression

String formatting expressions replace % targets in the string on the left of the % operator, with values on the right (similar to C’s sprintf). If more than one value is to be replaced, they must be coded as a tuple to the right of the % operator. If just one item is to be replaced, it can be coded as a single value or one-item tuple on the right (nest tuples to format a tuple itself). If key names are used on the left, a dictionary must be supplied on the right, and * allows width and precision to be passed in dynamically:

'The knights who say %s!' % 'Ni'

Result: 'The knights who say Ni!'

"%d %s %d you" % (1, 'spam', 4.0)

Result: '1 spam 4 you'

"%(n)d %(x)s" % {"n":1, "x":"spam"}

Result: '1 spam'

'%f, %.2f, %.*f' % (1/3.0, 1/3.0, 4, 1/3.0)

Result: '0.333333, 0.33, 0.3333'

In the format string on the left of the % operator, substitution targets have the following general format:
%[(keyname)][flags][width][.precision]typecode

keyname references an item in the expected dictionary; flags can be − (left-justify), + (numeric sign), a space (leave a blank before positive numbers), and 0 (zero fill); width is the total field width; precision gives digits after .; and typecode is a character from Table 1-8. Both width and precision can be coded as a * to force their values to be taken from the next item in the values to the right of the % operator when sizes are not known until runtime. Hint: %s converts any object to its print representation string.

Table 1-8. % string formatting type codes

	
Code

	
Meaning

	
Code

	
Meaning

	
s

	
String (or any object, uses str())

	
X

	
x with uppercase

	
r

	
s, but uses repr(), not str()

	
e

	
Floating-point exponent

	
c

	
Character (int or str)

	
E

	
e with uppercase

	
d

	
Decimal (base 10 integer)

	
f

	
Floating-point decimal

	
i

	
Integer

	
F

	
f with uppercase

	
u

	
Same as d (obsolete)

	
g

	
Floating-point e or f

	
o

	
Octal (base 8 integer)

	
G

	
Floating-point E or F

	
x

	
Hex (base 16 integer)

	
%

	
Literal '%'

String formatting method

The formatting method call works similar to the prior section’s expression, but is invoked with normal method-call syntax on the format string object, and identifies substitution targets with {} syntax instead of %. Substitution targets in the format string may name method-call arguments by position or keyword name; may further reference argument attributes, keys, and offsets; may accept default formatting or provide explicit type codes; and may nest target syntax to pull values from the arguments list:
>>> '{0}, {food}'.format(42, food='spam')
'42, spam'

>>> import sys
>>> fmt = '{0.platform} {1[x]} {2[0]}' # attr,key,index
>>> fmt.format(sys, {'x': 'ham', 'y': 'eggs'}, 'AB')
'win32 ham A'

>>> '{0} {1:+.2f}'.format(1 / 3.0, 1 / 3.0)
'0.333333333333 +0.33'

>>> '{0:.{1}f}'.format(1 / 3.0, 4)
'0.3333'

Most of these have equivalents in % expression usage patterns (e.g., dictionary key and * value references), though the expression requires some operations to be coded outside the format string itself. Substitution targets in strings used for format method calls take the following general form:
{fieldname!conversionflag:formatspec}

In this substitution target syntax:

	fieldname is a number or keyword naming an argument, followed by optional “.name” attribute or “[index]” component references.

	conversionflag is “r”, “s”, or “a” to call repr(), str(), or ascii() on the value, respectively.

	formatspec specifies how the value should be presented, including details such as field width, alignment, padding, decimal precision, and so on, and ends with an optional data type code.

The formatspec component after the colon character is formally described as follows (brackets in this denote optional components and are not coded literally):
[[fill]align][sign][#][0][width][.precision][typecode]

align may be “<”, “>”, “=”, or “^”, for left alignment, right alignments, padding after a sign character, or centered alignment, respectively. sign may be +, −, or space, and typecode is generally the same as that for % expressions in Table 1-8, with the following notable exceptions:

	The i and u type codes are absent; use d to display integers in decimal (base 10) format.

	An extra b type code displays integers in binary format (like using the bin() built-in).

	An extra % type code displays a number as a percentage.

A single object may also be formatted with the format(object, formatspec) built-in function (see Built-in Functions). Formatting may be customized with the __format__ operator-overloading method in classes (see Operator Overloading Methods).

Note

In Python 3.1 and later, a “,” preceding an integer or floating-point designation in typecode inserts thousands-separator commas:
'{0:,d}'.format(1000000)

creates '1,000,000', and:
'{0:13,.2f}'.format(1000000)

is ' 1,000,000.00'.

Also as of Python 3.1, field numbers are automatically numbered sequentially if omitted from fieldname—the following three have the same effect, though auto-numbered fields may be less readable if many fields are present:
'{0}/{1}/{2}'.format(x, y, z)' # explicit num
'{}/{}/{}'.format(x, y, z) # 3.1 auto-num
'%s/%s/%s' % (x, y, z) # expression

Template string substitution

In Python 2.4 and later, another form of simple string substitution is provided as an alternative to the string formatting expression and method described in the prior sections. The usual way of substituting variables is with the % operator:
>>> '%(page)i: %(title)s' % {'page':2, 'title': 'PyRef4E'}
'2: PyRef4E'

For simpler formatting tasks, a Template class has been added to the string module that uses $ to indicate a substitution:
>>> import string
>>> t = string.Template('$page: $title')
>>> t.substitute({'page':2, 'title': 'PyRef4E'})
'2: PyRef4E'

Substitution values can be provided as keyword arguments or dictionary keys:
>>> s = string.Template('$who likes $what')
>>> s.substitute(who='bob', what=3.14)
'bob likes 3.14'
>>> s.substitute(dict(who='bob', what='pie'))
'bob likes pie'

A safe_substitute method ignores missing keys rather than raising an exception:
>>> t = string.Template('$page: $title')
>>> t.safe_substitute({'page':3})
'3: $title'

String methods

In addition to the format() method described earlier, string method calls provide higher-level text processing tools beyond string expressions. Table 1-9 lists available string method calls; S is any string object in this table. String methods that modify text always return a new string and never modify the object in-place (strings are immutable). See also the re module in the section The re Pattern-Matching Module for pattern-based equivalents to some string type methods.

Table 1-9. Python 3.0 string method calls

	
S.capitalize()

	
S.center(width, [, fill])

	
S.count(sub [, start [, end]])

	
S.encode([encoding [,errors]])

	
S.endswith(suffix [, start [, end]])

	
S.expandtabs([tabsize])

	
S.find(sub [, start [, end]])

	
S.format(fmtstr, *args, **kwargs)

	
S.index(sub [, start [, end]])

	
S.isalnum()

	
S.isalpha()

	
S.isdecimal()

	
S.isdigit()

	
S.isidentifier()

	
S.islower()

	
S.isnumeric()

	
S.isprintable()

	
S.isspace()

	
S.istitle()

	
S.isupper()

	
S.join(iterable)

	
S.ljust(width [, fill])

	
S.lower()

	
S.lstrip([chars])

	
S.maketrans(x[, y[, z]])

	
S.partition(sep)

	
S.replace(old, new [, count])

	
S.rfind(sub [,start [,end]])

	
S.rindex(sub [, start [, end]])

	
S.rjust(width [, fill])

	
S.rpartition(sep)

	
S.rsplit([sep[, maxsplit]])

	
S.rstrip([chars])

	
S.split([sep [,maxsplit]])

	
S.splitlines([keepends])

	
S.startswith(prefix [, start [, end]])

	
S.strip([chars])

	
S.swapcase()

	
S.title()

	
S.translate(map)

	
S.upper()

	
S.zfill(width)

byte and bytearray methods

Python 3.0 bytes and bytearray
string types have similar method sets, but do not overlap exactly with the normal str string type (str is Unicode text, bytes is raw binary data, and bytearray is mutable). In the following, set(X) – set(Y) computes items in X that are not in Y:

	bytes and bytearray do not support Unicode encoding (they are raw bytes, not decoded text) or string formatting (str.format and the % operator implemented with __mod__)

	str does not support Unicode decoding (it is already-decoded text)

	bytearray has unique mutable in-place methods similar to list:>>> set(dir(str)) - set(dir(bytes))
{'isprintable', 'format', '__mod__', 'encode',
'isidentifier', '_formatter_field_name_split',
'isnumeric', '__rmod__', 'isdecimal',
'_formatter_parser', 'maketrans'}

>>> set(dir(bytes)) - set(dir(str))
{'decode', 'fromhex'}

>>> set(dir(bytearray)) - set(dir(bytes))
{'insert', '__alloc__', 'reverse', 'extend',
'__delitem__', 'pop', '__setitem__',
'__iadd__', 'remove', 'append', '__imul__'}

Besides methods, bytes and bytearray also support the usual sequence operations in Table 1-3, and bytearray supports mutable sequence operations in Table 1-4. See more in Unicode Strings and Built-in Functions.

Note

The set of string methods available in Python 2.6 varies slightly (e.g., there is a decode method for 2.6’s different Unicode type model). The Python 2.6 unicode string type has a nearly identical interface to 2.6 str objects. Consult the Python 2.6 Library Reference or run dir(str) and help(str.method) interactively for more details.

The following sections go into more detail on some of the methods listed in Table 1-9. In all of the following that return a string result, the result is a new string. (Because strings are immutable, they are never modified in-place.) Whitespace means spaces, tabs, and end-of-line characters (everything in string.whitespace).

Searching

s.find(sub, [, start [, end]])

Returns offset of the first occurrence of string sub in s, between offsets start and end (which default to 0 and len(s), the entire string). Returns −1 if not found. Also see the in membership operator, which may be used to test substring membership in a string.

s.rfind(sub, [, start [, end]])

Like find, but scans from the end (right to left).

s.index(sub [, start [, end]])

Like find, but raises ValueError if not found instead of returning −1.

s.rindex(sub [, start [, end]])

Like rfind, but raises ValueError if not found instead of returning −1.

s.count(sub [, start [, end]])

Counts the number of nonoverlapping occurrences of sub in s, from offsets start to end (defaults: 0, len(s)).

s.startswith(sub [, start [, end]])

True if string s starts with substring sub. start and end give optional begin and end points for matching sub.

s.endswith(sub [, start [, end]])

True if string s ends with substring sub. start and end give optional begin and end points for matching sub.

Splitting and joining

s.split([sep [, maxsplit]])

Returns a list of the words in the string s, using sep as the delimiter string. If maxsplit is given, at most maxsplit splits are done. If sep is not specified or is None, any whitespace string is a separator. 'a*b'.split('*') yields ['a','b']. Use list(s) to convert a string to a list of characters (e.g., ['a','*','b']).

sep.join(iterable)

Concatenates an iterable (e.g., list or tuple) of strings into a single string, with sep added between each item. sep can be " (an empty string) to convert a list of characters to a string ('*'.join(['a','b']) yields 'a*b').

s.replace(old, new [, count])

Returns a copy of string s with all occurrences of substring old replaced by new. If count is passed, the first count occurrences are replaced. This works like a combination of x=s.split(old) and new.join(x).

s.splitlines([keepends])

Splits string s on line breaks, returning lines list. The result does not retain line break characters unless keepends is true.

Formatting

s.capitalize()

Capitalizes the first character of string s.

s.expandtabs([tabsize])

Replaces tabs in string s with tabsize spaces (default is 8).

s.strip([chars])

Removes leading and trailing whitespace from string s (or characters in chars if passed).

s.lstrip([chars])

Removes leading whitespace from string s (or characters in chars if passed).

s.rstrip([chars])

Removes trailing whitespace from string s (or characters in chars if passed).

s.swapcase()

Converts all lowercase letters to uppercase, and vice versa.

s.upper()

Converts all letters to uppercase.

s.lower()

Converts all letters to lowercase.

s.ljust(width [, fill])

Left-justifies string s in a field of the given width; pads on right with character fill (which defaults to a space). The String formatting expression and method can achieve similar effects.

s.rjust(width [, fill])

Right-justifies string s in a field of the given width; pads on left with character fill (which defaults to a space). The String formatting expression and method can achieve similar effects.

s.center(width [, fill])

Centers string s in a field of the given width; pads on left and right with character fill (which defaults to a space). The String formatting expression and method can achieve similar effects.

s.zfill(width)

Pads string s on left with zero digits to produce a string result of the desired width (can also achieve with % string formatting expression).

s.translate(table [, deletechars])

Deletes all characters from string s that are in deletechars (if present), then translates the characters using table, a 256-character string giving the translation for each character value indexed by its ordinal.

s.title()

Returns a title-cased version of the string: words start with uppercase characters; all remaining cased characters are lowercase.

Content tests

s.is*()

The is*()
Boolean tests work on strings of any length. They test the content of strings for various categories (and always return False for an empty).

The original string module

Starting in Python 2.0, most of the string-processing functions previously available in the standard string module became available as methods of string objects. If X references a string object, a string module function call such as:
import string
res = string.replace(X, 'span', 'spam')

is usually equivalent in Python 2.0 to a string method call such as:
res = X.replace('span', 'spam')

But the string method call form is preferred and quicker, and string methods require no module imports. Note that the string.join(list, delim) operation becomes a method of the delimiter string delim.join(list). All these functions are removed from the string module in Python 3.0: use the equivalent string object methods instead.

Unicode Strings

Technically, all text is Unicode text, including the simple 8-bit ASCII encoding scheme. Python supports Unicode (wide) character strings, which represent each character with 16 or more bits, not 8. This support differs in Python lines. Python 3.0 treats all text as Unicode and represents binary data separately, while Python 2.X distinguishes 8-bit text (and data) from wider Unicode text. Specifically:

	In Python 2.6, the str type represents both 8-bit text and binary data, and a separate unicode type handles wide-character Unicode text. A u'ccc' literal form supports coding binary data, and a codecs module supports reading and writing files containing Unicode text.

	In Python 3.0, the normal str string type and literal handles all text (both 8 bit and wider Unicode), and a separate bytes type represents 8-bit binary data. bytes may be coded with the b'ccc' literal form; it is an immutable sequence of small integers, but supports most str operations, and prints as ASCII text when possible. Also in 3.0, files imply str and bytes objects in text and binary mode; text mode files automatically encode and decode text; and an additional bytearray type is a mutable variant of bytes, with extra list-like methods for in-place changes. bytearray is also present in 2.6, but bytes is not (b'ccc' creates a str in 2.6 for compatibility).

Unicode support in Python 3.0

Python 3.0 allows non-ASCII characters to be coded in strings with hex (\x) and both 16- and 32-bit Unicode (\u, \U) escapes. In addition, chr() supports Unicode character codes:
>>> 'A\xE4B'
'AäB'
>>> 'A\u00E4B'
'AäB'
>>> 'A\U000000E4B'
'AäB'
>>> chr(0xe4)
'ä'

Normal strings may be encoded into raw bytes and raw bytes may be decoded into normal strings, using either default or explicit encodings:
>>> 'A\xE4B'.encode('latin-1')
b'A\xe4B'
>>> 'A\xE4B'.encode()
b'A\xc3\xa4B'
>>> 'A\xE4B'.encode('utf-8')
b'A\xc3\xa4B'
>>>
>>> b'A\xC3\xA4B'.decode('utf-8')
'AäB'

File objects also automatically decode and encode on input and output, and accept an encoding name to override the default encoding:
>>> S = 'A\xE4B'
>>> open('uni.txt', 'w', encoding='utf-8').write(S)
3
>>> open('uni.txt', 'rb').read()
b'A\xc3\xa4B'
>>>
>>> open('uni.txt', 'r', encoding='utf-8').read()
'AäB'

byte and bytearray strings

Python 3.0 bytes and bytearray
string objects represent 8-bit binary data (including encoded Unicode text); print in ASCII when possible; and support most normal str string operations including methods and sequence operations:
>>> B = b'spam'
>>> B
b'spam'
>>> B[0] # sequence ops
115
>>> B + b'abc'
b'spamabc'
>>> B.split(b'a') # methods
[b'sp', b'm']
>>> list(B) # sequence of int
[115, 112, 97, 109]

bytearray additionally supports list-like mutable operations:
>>> BA = bytearray(b'spam')
>>> BA
bytearray(b'spam')
>>> BA[0]
115
>>> BA + b'abc'
bytearray(b'spamabc')
>>> BA[0] = 116 # mutability
>>> BA.append(115) # list methods
>>> BA
bytearray(b'tpams')

See also the discussion of byte and bytearray methods in String methods, and the type constructor calls in Built-in Functions. Python 2.6 has bytearray but not bytes (in 2.6 b'ccc' is a synonym for 'ccc', and creates a normal str string).

Unicode support in Python 2.X

In Python 2.X Unicode strings are written as u'string' (in Python 3.0 the normal string type and literal are used for Unicode). Arbitrary Unicode characters can be written using a special escape sequence, \uHHHH, where HHHH is a four-digit hexadecimal number from 0000 to FFFF. The traditional \xHH escape sequence can also be used, and octal escapes can be used for characters up to +01FF, which is represented by \777.

Like normal strings, all immutable sequence operations apply to unicode. Normal and Unicode string objects can be freely mixed in Python 2; combining 8-bit and Unicode strings always coerces to Unicode, using the default ASCII encoding (e.g., the result of 'a' + u'bc' is u'abc'). Mixed-type operations assume the 8-bit string contains 7-bit U.S. ASCII data (and raise an error for non-ASCII characters). The built-in str() and unicode() functions can be used to convert between normal and Unicode strings. The encode string method applies a desired encoding scheme to Unicode strings. A handful of related modules (e.g., codecs) and built-in functions are also available.

Lists

Lists
are mutable (changeable) arrays of object references, accessed by offset.

Literals and creation

Lists are written as a comma-separated series of values enclosed in square brackets.

[]

An empty list.

[0, 1, 2, 3]

A four-item list: indexes 0...3.

alist = ['spam', [42, 3.1415], 1.23, {}]

Nested sublists: alist[1][0] fetches 42.

alist = list('spam')

Creates a list of all items in any iterable, by calling the type constructor function.

alist = [x**2 for x in range(9)]

Creates a list by collecting expression results during iteration (list comprehension).

Operations

Operations include all sequence operations (see Table 1-3), plus all mutable sequence operations (see Table 1-4), plus the following list methods:

alist.append(x)

Inserts the single object x at the end of alist, changing the list in-place.

alist.extend(x)

Inserts each item in any iterable x at the end of alist in-place (an in-place +). Similar to alist[len(alist):] = list(x).

alist.sort(key=None, reverse=False)

Sorts alist in-place, in ascending order by default. If passed, key specifies a function of one argument that is used to extract or compute a comparison value from each list element. If reverse is passed and true, the list elements are sorted as if each comparison were reversed. For example: alist.sort(key=str.lower, reverse=True). See also the sorted() built-in function.

alist.reverse()

Reverses items in alist in-place.

alist.index(x [, i [, j]])

Returns the index of the first occurrence of object x in alist; raises an exception if not found. This is a search method. If i and j are passed, it returns the smallest k such that s[k] == x and i <= k < j.

alist.insert(i, x)

Inserts object x into alist at offset i (like alist[i:i] = [x], for positive i).

alist.count(x)

Returns the number of occurrences of x in alist.

alist.remove(x)

Deletes the first occurrence of object x from alist; raises an exception if not found. Same as del alist[alist.index(x)].

alist.pop([i])

Deletes and returns the last (or offset i) item in alist. Use with append to implement stacks. Same as x=alist[i];
del alist[i];
return x, where i defaults to −1, the last item.

Note

In Python 2.X, the list sort method signature is alist.sort(cmp=None, key=None, reverse=False), where cmp is a two-argument comparison function, which returns a value less than, equal to, or greater than zero to denote a less, equal, and greater result. The comparison function is removed in 3.0 because it was typically used to map sort values and reverse sort order—use cases supported by the remaining two arguments.

List comprehension expressions

A list literal enclosed in square brackets ([...]) can be a simple list of expressions or a list comprehension expression of the following form:
[expression for expr1 in iterable1 [if condition1]
 for expr2 in iterable2 [if condition2] ...
 for exprN in iterableN [if conditionN]]

List comprehensions construct result lists: they collect all values of expression, for each iteration of all nested for loops, for which each optional condition is true. The second through nth for loops and all if parts are optional, and expression and condition can use variables assigned by nested for loops. Names bound inside the comprehension are created in the scope where the comprehension resides in 2.X (but local to the expression in 3.X).

Comprehensions are similar to the map() built-in function:
>>> [ord(x) for x in 'spam']
[115, 112, 97, 109]
>>> map(ord, 'spam')
[115, 112, 97, 109]

but can often avoid creating a temporary helper function:
>>> [x**2 for x in range(5)]
[0, 1, 4, 9, 16]
>>> map((lambda x: x**2), range(5))
[0, 1, 4, 9, 16]

Comprehensions with conditions are similar to filter:
>>> [x for x in range(5) if x % 2 == 0]
[0, 2, 4]
>>> filter((lambda x: x % 2 == 0), range(5))
[0, 2, 4]

Comprehensions with nested for loops are similar to the normal for:
>>> [y for x in range(3) for y in range(3)]
[0, 1, 2, 0, 1, 2, 0, 1, 2]

>>> res = []
>>> for x in range(3):
... for y in range(3):
... res.append(y)
>>> res
[0, 1, 2, 0, 1, 2, 0, 1, 2]

Generator expressions

As of Python 2.4, generator expressions achieve results similar to list comprehensions, without generating a physical list to hold all results. Generator expressions define a set of results, but do not materialize the entire list, to save memory; instead, they create a generator that will return elements one by one in iteration contexts. For example:
ords = (ord(x) for x in aString if x not in skipThese)
for o in ords:
 ...

Generator expressions are written inside parentheses rather than square brackets, but otherwise support all list comprehension syntax. The parentheses used for a function with a single argument suffice when creating an iterator to be passed to a function:
sum(ord(x) for x in aString)

Generator expression loop variables (x, in the prior example) are not accessible outside the generator expression. In Python 2.X, list comprehensions leave the variable assigned to its last value; Python 3.0 changes this to make list comprehensions’ scope work like generator expressions.

Use the iterator protocol’s __next__() method (next() in Python 2.X) to step through results outside iteration contexts such as for loops, and use the list call to produce a list of all results, if required:
>>> squares = (x ** 2 for x in range(5))
>>> squares
<generator object <genexpr> at 0x027C1AF8>
>>> squares.__next__()
0
>>> squares.__next__() # or next(squares)
1
>>> list(x ** 2 for x in range(5))
[0, 1, 4, 9, 16]

See The yield Statement for more on generators and iterators, including additional generator methods.

Other generators and comprehensions

See also the related yield statement, dictionary comprehensions, and set comprehensions elsewhere in this book. The latter two are similar expressions that produce dictionaries and sets; they support syntax identical to list comprehensions and generator expressions, but are coded within {}, and dictionary comprehensions begin with a key:value expression pair:
>>> [x * x for x in range(10)] # List comp.
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

>>> (x * x for x in range(10)) # Generator expr.
<generator object at 0x009E7328>

>>> {x * x for x in range(10)} # Set comp. (3.0)
{0, 1, 4, 81, 64, 9, 16, 49, 25, 36}

>>> {x: x * x for x in range(10)} # Dict comp. (3.0)
{0: 0, 1: 1, 2: 4, 3: 9, 4: 16, 5: 25, 6: 36, 7: 49,
8: 64, 9: 81}

Dictionaries

Dictionaries
are mutable tables of object references, accessed by key, not position. They are unordered collections, implemented internally as dynamically expandable hash tables. Dictionaries have changed significantly in Python 3.0:

	In Python 2.X, the keys()/values()/items() methods return lists; there is a has_key() lookup method; there are distinct iterator methods iterkeys()/itervalues()/iteritems(); and dictionaries may be compared directly.

	In Python 3.0, the keys()/values()/items() methods return iterable view objects instead of lists; has_key() is removed in favor of in expressions; Python 2.X iterator methods are removed in favor of view object iteration; dictionaries cannot be compared directly, but their sorted(D.items()) can; and there is a new dictionary comprehension expression.

	Python 3.0 view objects produce results on demand, retain the original order in the dictionary, reflect future dictionary changes, and may support set operations. Key views are always set-like, value views never are, and item views are if all their items are unique and hashable (immutable). See Sets for set expressions that may be applied to some views. Pass views to the list() call to force generation of all their results at once (e.g., for display, or for list.sort()).

Literals and creation

Dictionary literals are written as comma-separated series of key:value pairs inside curly braces, the dict() built-in supports other creation patterns, and comprehensions employ iteration in Python 3.0. Assigning to new keys generates new entries. Any immutable object can be a key (e.g., string, number, tuple), and class instances can be keys if they inherit hashing protocol methods. Tuple keys support compound values (e.g., adict[(M,D,Y)], with parentheses optional).

{}

An empty dictionary.

{'spam': 2, 'eggs': 3}

A two-item dictionary: keys 'spam' and 'eggs'.

adict = { 'info': { 42: 1, type("): 2 }, 'spam': [] }

Nested dictionaries: adict['info'][42] fetches 1.

adict = dict(name='Bob', age=45, job=('mgr', 'dev'))

Creates a dictionary by passing keyword arguments to the type constructor.

adict = dict(zip('abc', [1, 2, 3]))

Creates a dictionary by passing key/value tuples list to the type constructor.

adict = dict([['a', 1], ['b', 2], ['c', 3]])

Same effect as prior line: any iterable of keys and values.

adict = {c: ord(c) for c in 'spam'}

Dictionary comprehension expression (Python 3). See List comprehension expressions for syntax.

Operations

Operations comprise all mapping operations (see Table 1-5), plus the following dictionary-specific methods.

adict.keys()

All keys in adict. In Python 2.X, this returns a list. In Python 3.0, it returns an iterable view object described earlier. for k in adict: also supports keys iteration.

adict.values()

All stored values in adict. In Python 2.X, this returns a list. In Python 3.0, it returns an iterable view object described earlier.

adict.items()

Tuple pairs (key, value), one for each entry in adict. In Python 2.X, this returns a list. In Python 3.0, it returns an iterable view object described earlier.

adict.clear()

Removes all items from adict.

adict.copy()

Returns a shallow (top-level) copy of adict.

dict1.update(dict2)

Merges all of dict2’s entries into dict1, in-place, similar to for (k, v) in dict2.items(): dict1[k] = v. In Python 2.4, also accepts an iterable of key/value pairs, as well as keyword arguments (dict.update(k1=v1, k2=v2)).

adict.get(key [, default])

Similar to adict[key], but returns default (or None if no default) instead of raising an exception when key is not found in adict.

adict.setdefault(key, [, default])

Same as adict.get(key, default), but also assigns key to default if it is not found in adict.

adict.popitem()

Removes and returns an arbitrary (key, value) pair.

adict.pop(k [, default])

Returns adict[k] if k in adict (and removes k); else, returns default.

adict.fromkeys(seq [, value])

Creates a new dictionary with keys from seq and values set to value.

The following methods are available in Python 2.X only:

adict.has_key(k)

Returns True if adict has a key k, or False otherwise. In Python 2.X only, this method is equivalent to k in adict, but is not generally recommended; it is removed in Python 3.0.

adict.iteritems(), adict.iterkeys(), adict.itervalues()

Returns an iterator over key/value pairs, keys only, or values only. In Python 3.0, these are removed because keys(), values(), and items() return iterable view objects.

The following operations are described in Table 1-5, but relate to methods above:

k in adict

Returns True if adict has a key k, or False otherwise. Replaces has_key() in Python 3.0.

for k in adict:

Iterates over keys in adict (all iteration contexts). Dictionary supports direct iteration. for key in dict is similar to for key in dict.keys(). The former uses the dictionary object’s keys iterator. In Python 2.X, keys() returns a new list that incurs a slight overhead. In Python 3.0, keys() returns an iterable view object instead of a physically stored list, making both forms equivalent.

Tuples

Tuples are immutable arrays of object references, accessed by offset.

Literals

Tuples are written as comma-separated series of values enclosed in parentheses. The enclosing parentheses can sometimes be omitted (e.g., in for loop headers and = assignments).

()

An empty tuple.

(0,)

A one-item tuple (not a simple expression).

(0, 1, 2, 3)

A four-item tuple.

0, 1, 2, 3

Another four-item tuple (same as prior line); not valid in function calls.

atuple = ('spam', (42, 'eggs'))

Nested tuples: atuple[1][1] fetches 'eggs'.

atuple = tuple('spam')

Creates a tuple of all items in any iterable, by calling the type constructor function.

Operations

All sequence operations (see Table 1-3), plus the following tuple-specific methods in Python 2.6, 3.0, and later:

atuple.index(x [, i [, j]])

Returns the index of the first occurrence of object x in atuple; raises an exception if not found. This is a search method. If i and j are passed, it returns the smallest k such that s[k] == x and i <= k < j.

atuple.count(x)

Returns the number of occurrences of x in atuple.

Files

The built-in open() function creates a file object, the most common file interface. File objects export the data transfer method calls in the next section. In Python 2.X only, the name file() can be used as a synonym for open() when creating a file object, but open() is the generally recommended spelling; in Python 3.0, file() is no longer available.

See the open() function in the section Built-in Functions for full file-creation details. See also Unicode Strings for the distinction between text and binary files and their corresponding implied string type differences in Python 3.0.

Related file-like tools covered later in this book: see the dbm, shelve, and pickle modules in the section Object Persistence Modules; the os module descriptor-based file functions and the os.path directory path tools in the section The os System Module; and the Python SQL database API in the section Python Portable SQL Database API.

Input files

infile = open('data.txt', 'r')

Creates input file ('r' means read as text, while 'rb' reads binary with no line-break translation). The filename string (e.g.,
'data.txt') maps to the current working directory, unless it includes a directory path prefix (e.g., 'c:\\dir\\data.txt'). The mode argument (e.g., 'r') is optional and defaults to 'r'.

infile.read()

Reads entire file, returning its contents as a single string. In text mode ('r'), line-ends are translated to '\n' by default. In binary mode ('rb'), the result string can contain nonprintable characters (e.g., '\0'). In Python 3.0, text mode decodes Unicode text into a str string, and binary returns unaltered content in a bytes.

infile.read(N)

Reads at most N more bytes (1 or more); empty at end-of-file.

infile.readline()

Reads next line (through end-of-line marker); empty at end-of-file.

infile.readlines()

Reads entire file into a list of line strings. See also file iterators, discussed next.

for line in infile:

Uses file iterators to step through lines in a file automatically. Also available in all other iteration contexts (e.g., [line[:-1] for line in open('filename')]). The iteration for line in fileobj: has an effect similar to for line in fileobj.readlines():, but the file iterator version does not load the entire file into memory and so is more efficient.

Output files

outfile = open('/tmp/spam', 'w')

Creates output file. (Note that 'w' means write text; 'wb' writes binary data with no line-break translation.)

outfile.write(S)

Writes string S onto file (all bytes in S, with no formatting applied). In text mode, '\n' is translated to the platform-specific line-end marker sequence by default. In binary mode, the string can contain nonprintable bytes (e.g., use 'a\0b\0c' to write a string of five bytes, two of which are binary zero). In Python 3.0, text mode encodes str Unicode strings, and binary mode writes bytes strings unaltered.

outfile.writelines(L)

Writes all strings in list L onto file.

Any files

file.close()

Manual close to free resources (Python currently auto-closes files if still open when they are garbage-collected). See also the upcoming file object context manager discussion.

file.tell()

Returns the file’s current position.

file.seek(offset [, whence])

Sets the current file position to offset for random access. whence can be 0 (offset from front), 1 (offset +/– from current position), or 2 (offset from end). whence defaults to 0.

file.isatty()

Returns 1 if the file is connected to a tty-like interactive device.

file.flush()

Flushes the file’s stdio buffer. Useful for buffered pipes, if another process (or human) is reading. Also useful for files created and read in the same process.

file.truncate([size])

Truncates file to, at most, size bytes (or current position if no size is passed). Not available on all platforms.

file.fileno()

Gets file number (descriptor integer) for file. This roughly converts file objects to descriptors that can be passed to tools in the os module. Use os.fdopen to convert a descriptor to a file object, socketobj.makefile to convert a socket to a file object, and io.StringIO (StringIO.StringIO in Python 2.X) to convert a string to an object with a file-like interface.

Attributes (all read-only)

file.closed

True
if file has been closed.

file.mode

Mode string (e.g., 'r') passed to open function.

file.name

String name of corresponding external file.

File context managers

In standard Python (CPython), file objects normally close themselves when garbage collected if still open. Because of this, temporary files (e.g., open('name').read()) need not be closed explicitly. To guarantee closes after a block of code exits, regardless of whether the block raises an exception, use the try/finally statement and manual closes:
myfile = open(r'C:\misc\script', 'w')
try:
 ...use myfile...
finally:
 myfile.close()

Or use the with/as statement available as of Python 2.6 and 3.0:
with open(r'C:\misc\script', 'w') as myfile:
 ...use myfile...

The first of these inserts a close call as a termination-time action. The latter of these employs file object context managers, which guarantee that a file is automatically closed when the enclosed code block exits. See the try and with statements in Statements and Syntax.

Notes

	Some file-open modes (e.g., 'r+') allow a file to be both input and output, and others (e.g., 'rb') specify binary-mode transfer to suppress line-end marker conversions (and Unicode encodings in Python 3.0). See open() in the section Built-in Functions.

	File-transfer operations occur at the current file position, but seek method calls reposition the file for random access.

	File transfers can be made unbuffered: see open() in the section Built-in Functions, and the -u command-line flag in the section Command-Line Options.

	Python 2.X also includes an xreadlines() file object method, which works the same as the file object’s automatic line iterator, and has been removed in Python 3.0 due to its redundancy.

Sets

Sets are mutable and unordered collections of unique and immutable objects. Sets support mathematical set operations such as union and intersection. They are not sequences (they are unordered), and not mappings (they do not map values to keys), but support iteration, and function much like value-less (or keys-only) dictionaries.

Literals and creation

In Python 2.X and 3.0, sets may be created by calling the set() built-in function with an iterable whose items become members of the resulting set. In Python 3.0, sets may also be created by {...} set literal and set comprehension expression syntax, though set() is still used to make an empty set ({} is the empty dictionary), and to build sets from existing objects. Sets are mutable, but items in a set must be immutable; the frozenset() built-in creates an immutable set, which can be nested within another set.

set()

An empty set

aset = set('eggs')

A four-item set: values 's', 'p', 'a', 'm' (accepts any iterable)

aset = {'s', 'p', 'a', 'm'}

A four-item set, same as prior line (Python 3)

aset = {ord(c) for c in 'spam'}

Sets comprehension expression (Python 3); see List comprehension expressions for syntax

aset = frozenset(range(−5, 5))

A frozen (immutable) set of 10 integers −5...4

Operations

The following documents the most prominent set operations but is not complete; see Python’s Library Reference for an exhaustive list of set expressions and methods available. Most expression operators require two sets, but their method-based equivalents accept any iterable, denoted by “other” in the following (e.g., {1, 2} | [2, 3] fails, but {1, 2}.union([2, 3]) works):

value in aset

Membership: returns True if aset contains value

set1 – set2, set1.difference(other)

Difference: new set containing items in set1 that are not in set2

set1 | set2, set1.union(other)

Union: new set containing items in either set1 or set2 with no duplicates

set1 & set2, set1.intersection(other)

Intersection: new set containing items in both set1 and set2

set1 <= set2, set1.issubset(other)

Subset: tests whether every element in set1 is also in set2

set1 >= set2, set1.issubset(other)

Superset: tests whether every element in set2 is also in set1

set1 < set2, set1 > set2

True subset and superset: also tests that set1 and set2 are not the same

set1 ^ set2, set1.symmetric_difference(other)

Symmetric difference: new set with elements in either set1 or set2 but not both

set1 |= set2, set1.update(other)

Updates (not for frozen sets): adds items in set2 to set1

set1.add(X), set1.remove(X), set1.discard(X), set1.pop(), set1.clear()

Updates (not for frozen sets): adds an item, removes an item, removes an item if present, removes and returns an arbitrary item, removes all items

len(aset)

Length: numbers items in set

for x in aset:

Iteration: all iteration contexts

aset.copy()

Makes a copy of aset; same as set(aset)

Other Common Types

Python’s core types also include Booleans (described next); None (a placeholder object); types (accessed with the type() built-in function, and always classes in Python 3); and program-unit
types such as functions, modules, and classes (runtime object in Python).

Boolean

The Boolean type, named bool, provides two predefined constants, named True and False (available since version 2.3). For most purposes, these constants can be treated as though they were pre-assigned to integers 1 and 0, respectively (e.g., True + 3 yields 4). However, the bool type is a subclass of the integer type int, and customizes it to print instances differently (True prints as “True”, not “1”, and may be used as a built-in name in logical tests).

Type Conversions

Tables 1-10 and 1-11
define common built-in tools for converting from one type to another. (Python 2 also supports a long(S) to-long and `X` to-string converters removed in Python 3.0.)

Table 1-10. Sequence converters

	
Converter

	
Converts from

	
Converts to

	
list(X),

[n for n in X][a]

	
String, tuple, any iterable

	
List

	
tuple(X)

	
String, list, any iterable

	
Tuple

	
''.join(X)

	
Iterable of strings

	
String

	

[a] The list comprehension form may be slower than list(). In Python 2.X only, map(None, X) has the same effect as list(X) in this context, though this form of map is removed in Python 3.0.

Table 1-11. String/object converters

	
Converter

	
Converts from

	
Converts to

	
eval(S)

	
String

	
Any object with a syntax (expression)

	
int(S [, base]),[a]

float(S)

	
String or number

	
Integer, float

	
repr(X),

str(X)

	
Any Python object

	
String (repr is as code, str is user-friendly)

	
F % X,
F.format(X)

	
Objects with format codes

	
String

	
hex(X), oct(X), bin(X), str(X)

	
Integer types

	
Hexadecimal, octal, binary, decimal digit strings

	
ord(C), chr(I)

	
Character, integer code

	
Integer code, character

	

[a] In version 2.2 and later, converter functions (e.g., int, float, str) also serve as class constructors and can be subclassed. In Python 3.0, all types are classes, and all classes are instances of the type class.

[1] In Python 2.6, there is a distinct type named long for unlimited-precision integers; int is for normal integers with precision that is usually limited to 32 bits. Long objects may be coded with a trailing “L” (e.g., 99999L), though integers are automatically promoted to longs if they require the extra precision. In 3.0, the int type provides unlimited precision and so subsumes both the 2.6 int and long types; the “L” literal syntax is removed in 3.0.

[2] In Python 2.6, octal literals may also be written with just a leading zero—0777 and 0o777 are equivalent. In 3.0, only the latter form is supported for octal.

Statements and Syntax

This section describes the rules for syntax and variable names.

Syntax Rules

Here are the general rules for writing Python programs:

Control flow

Statements execute one after another, unless control-flow statements are used (if, while, for, raise, calls, etc.).

Blocks

A block is delimited by indenting all of its statements by the same amount, with spaces or tabs. A tab counts for enough spaces to move the column to a multiple of 8. Blocks can appear on the same line as a statement header if they are simple statements.

Statements

A statement ends at the end of a line, but can continue over multiple lines if a physical line ends with a \, an unclosed (), [], or {} pair, or an unclosed, triple-quoted string. Multiple simple statements can appear on a line if they are separated with a semicolon (;).

Comments

Comments start with a # (not in a string constant) and span to the end of the line.

Documentation strings

If a function, module file, or class begins with a string literal, it is stored in the object’s __doc__ attribute. See the help() function, and the pydoc module and script in the Python Library Reference for automated extraction and display tools.

Whitespace

Generally significant only to the left of code, where indentation is used to group blocks. Blank lines and spaces are otherwise ignored except as token separators and within string constants.

Name Rules

This section contains the rules for user-defined names (i.e., variables) in programs.

Name format

Structure

User-defined names start with a letter or underscore (_), followed by any number of letters, digits, or underscores.

Reserved words

User-defined names cannot be the same as any Python reserved word listed in Table 1-12.[3]

Case sensitivity

User-defined names and reserved words are always case-sensitive: SPAM, spam, and Spam are different names.

Unused tokens

Python does not use the characters $ and ? in its syntax, though they can appear in string constants and comments, and $ is special in string template substitution.

Creation

User-defined names are created by assignment but must exist when referenced (e.g., counters must be explicitly initialized to zero). See the section Namespace and Scope Rules.

Table 1-12. Python 3.0 reserved words

	
False

	
class

	
finally

	
is

	
return

	
None

	
continue

	
for

	
lambda

	
try

	
True

	
def

	
from

	
nonlocal

	
while

	
and

	
del

	
global

	
not

	
with

	
as

	
elif

	
if

	
or

	
yield

	
assert

	
else

	
import

	
pass

	

	
break

	
except

	
in

	
raise

	

Note

In Python 2.6, print and exec are both reserved words, as they take the form of statements, not built-in functions. Also in Python 2.6, nonlocal, True, and False are not reserved words; the first of these is unavailable, and the latter two are simply built-in names. with and as are reserved in both 2.6 and 3.0, but not in earlier 2.X releases unless context managers are explicitly enabled. yield is reserved as of 2.3; it morphed from statement to expression later but is still a reserved word.

Name conventions

	Names that begin and end with two underscores (for example, __init__) have a special meaning to the interpreter but are not reserved words.

	Names beginning with one underscore (e.g., _X) and assigned at the top level of a module are not copied out by from...* imports (see also the __all__ module export names list, mentioned in the sections
The from Statement and Pseudoprivate Attributes). In other contexts, this is an informal convention for internal names.

	Names beginning but not ending with two underscores (e.g., __X) within a class statement are prefixed with the enclosing class’s name (see Pseudoprivate Attributes).

	The name that is just a single underscore (_) is used in the interactive interpreter (only) to store the result of the last evaluation.

	Built-in function and exception names (e.g., open, SyntaxError) are not reserved words. They live in the last-searched scope and can be reassigned to hide the built-in meaning in the current scope (e.g., open=myfunction).

	Class names commonly begin with an uppercase letter (e.g., MyClass), and modules with a lowercase letter (e.g., mymodule).

	The first (leftmost) argument in a class method function is usually named self.

[3] In the Jython Java-based implementation, user-defined names can sometimes be the same as reserved words.

Specific Statements

The following sections describe all Python statements. Each section lists the statement’s syntax formats, followed by usage details. For compound statements, each appearance of a suite in a statement format stands for one or more other statements, possibly indented as a block under a header line. A suite must be indented under a header if it contains another compound statement (if, while, etc.); otherwise, it can appear on the same line as the statement header. The following are both valid constructs:
if x < 42:
 print(x)
 while x: x = x − 1

if x < 42: print(x)

The Assignment Statement

target = expression
target1 = target2 = expression
target1, target2 = expression1, expression2
target1 += expression
target1, target2, ... = same-length-iterable
(target1, target2, ...) = same-length-iterable
[target1, target2, ...] = same-length-iterable
target1, *target2, ... = matching–length-iterable

Assignments store references to objects in targets. Expressions yield objects. Targets can be simple names (X), qualified attributes (X.attr), or indexes and slices (X[i], X[i:j]).

The second format assigns an expression object to each target. The third format pairs targets with expressions, left to right. The last three formats assign components of any sequence (or other iterable) to corresponding targets, from left to right. The sequence or iterable on the right must be the same length but can be any type, unless a single starred-name appears in the targets on the left to collect arbitrarily many items (Python 3.0 extended sequence assignment, discussed ahead):
target1, *target2, ... = iterable

Augmented assignment

A set of additional assignment statement formats, listed in Table 1-13, are available. Known as augmented assignments, these formats imply a binary expression plus an assignment. For instance, the following two formats are roughly equivalent:
X = X + Y
X += Y

However, the reference to target X in the second format needs to be evaluated only once, and in-place operations can be applied for mutables as an optimization (e.g., list1 += list2
automatically calls list1.extend(list2), instead of the slower concatenation operation implied by +). Classes can overload in-place assignments with method names that begin with an i (e.g., __iadd__ for +=, __add__ for +). The format X //= Y (floor division) is new as of version 2.2.

Table 1-13. Augmented assignment statements

	
X += Y

	
X &= Y

	
X -= Y

	
X |= Y

	
X *= Y

	
X ^= Y

	
X /= Y

	
X >>= Y

	
X %= Y

	
X <<= Y

	
X **= Y

	
X //= Y

Normal and extended sequence assignment

In Python 2.X and 3.0, any sequence (or other iterable) of values may be assigned to any sequence of names, as long as the lengths are the same. This basic sequence assignment form works in most assignment contexts:
>>> a, b, c, d = [1, 2, 3, 4]
>>> a, d
(1, 4)

>>> for (a, b, c) in [[1, 2, 3], [4, 5, 6]]:
... print(a, b, c)
...
1 2 3
4 5 6

In Python 3.0, sequence assignment is extended to allow collection of arbitrarily many items, by prefixing one variable in the assignment target with a star; when used, sequence lengths need not match:
>>> a, *b = [1, 2, 3, 4]
>>> a, b
(1, [2, 3, 4])

>>> a, *b, c = [1, 2, 3, 4]
>>> a, b, c
(1, [2, 3], 4)

>>> *a, b = [1, 2, 3, 4]
>>> a, b
([1, 2, 3], 4)

>>> for (a, *b) in [[1, 2, 3], [4, 5, 6]]: print(a, b)
...
1 [2, 3]
4 [5, 6]

The Expression Statement

expression
function([value, name=value, *name, **name...])
object.method([value, name=value, *name, **name...])

Any expression can appear on a line by itself as a statement (but statements cannot appear as expressions). Expressions are commonly used for calling functions and methods, and for interactive-mode printing. Expression statements are also the most common coding for yield expressions and Python 3.0 print() built-in function calls (though they are documented as specific statements in this book).

Call syntax

In function and method calls, actual arguments are separated by commas and are normally matched to arguments in function def headers by position. Calls can optionally list specific argument names in functions to receive passed values by using the name=value keyword argument syntax. Keyword arguments match by name instead of position.

Arbitrary arguments call syntax

Special syntax can be used in function and method call argument lists to unpack arbitrarily many arguments. If pargs and kargs are a sequence (or other iterable) and a dictionary, respectively:
f(*pargs, **kargs)

This format calls function f with positional arguments from iterable pargs, and keyword arguments from dictionary kargs. For instance:
>>> def f(a, b, c, d): print(a, b, c, d)
...
>>> f(*[1, 2], **dict(c=3, d=4))
1 2 3 4

This syntax is intended to be symmetric with function header arbitrary-argument syntax such as def f(*pargs, **kargs). It is also flexible, since it can be easily combined with other positional and keyword arguments (e.g., g(1, 2, foo=3, bar=4, *args, **kw)).

In Python 2.X, the apply() built-in function achieves a similar effect but is removed as of Python 3.0:
apply(f, pargs, kargs)

See also The def Statement for more call syntax details.

The print Statement

Printing takes the form of a built-in function call in Python 3.0, which is commonly coded as an expression statement (on a line by itself). Its call signature is as follows:
print([value [, value]*]
 [, sep=string] [, end=string] [, file=file])

Each value denotes an object to be printed. This call is configured by its three keyword-only arguments:

	sep is a string to place between values (defaults to a space: ' ').

	end is a string to place at the end of the text printed (defaults to a newline: '\n').

	file is the file-like object to which text is written (defaults to standard output: sys.stdout).

Pass empty or custom strings to suppress space separators and line feeds, and pass a file or file-like object to redirect output in your script:
>>> print(2 ** 32, 'spam')
4294967296 spam

>>> print(2 ** 32, 'spam', sep='')
4294967296spam

>>> print(2 ** 32, 'spam', end=' '); print(1, 2, 3)
4294967296 spam 1 2 3

>>> print(2 ** 32, 'spam', sep='', file=open('out', 'w'))
>>> open('out').read()
'4294967296spam\n'

Because by default print simply calls the write method of the object currently referenced by sys.stdout, the following is equivalent to print(X):
import sys
sys.stdout.write(str(X) + '\n')

To redirect print text to files or class objects, either pass any object with a write method to the file keyword argument as shown earlier, or reassign sys.stdout to any such object:
sys.stdout = open('log', 'a') # any object with a write()
print('Warning-bad spam!') # goes to object's write()

Because sys.stdout can be reassigned, the file keyword argument is not strictly needed; however, it can often avoid both explicit write method calls, and saving and restoring the original sys.stdout value around a redirected print when the original stream is still required. See also Built-in Functions.

Python 2.X print statements

In Python 2.X, printing is a specific statement instead of a built-in function, of the following form:
print [value [, value]* [,]]
print >> file [, value [, value]* [,]]

The Python 2.X print statement displays the printable representation of values on the stdout stream (the current setting of sys.stdout) and adds spaces between values. The trailing comma suppresses the linefeed that is normally added at the end of a list, and is equivalent to using end=' ' in Python 3.0:
>>> print 2 ** 32, 'spam'
4294967296 spam

>>> print 2 ** 32, 'spam',; print 1, 2, 3
4294967296 spam 1 2 3

The Python 2.X print statement can also name an open output file-like object to be the target of the printed text, instead of sys.stdout:
fileobj = open('log', 'a')
print >> fileobj, "Warning-bad spam!"

If the file object is None, sys.stdout is used. This Python 2.X >> syntax is equivalent to the file=F keyword argument in Python 3.0. There is no equivalent to sep=S in Python 2’s statement.

To use the Python 3.0 printing function in Python 2.X, run the following:
from __future__ import print_function

The if Statement

if test:
 suite
[elif test:
 suite]*
[else:
 suite]

The if
statement selects from among one or more actions (statement blocks), and it runs the suite associated with the first if or elif test that is true, or the else suite if all are false.

The while Statement

while test:
 suite
[else:
 suite]

The while
loop is a general loop that keeps running the first suite while the test at the top is true. It runs the else suite if the loop exits without hitting a break statement.

The for Statement

for target in iterable:
 suite
[else:
 suite]

The for
loop is a sequence (or other iterable) iteration that assigns items in iterable to target and runs the first suite for each. The for statement runs the else suite if the loop exits without hitting a break statement. target can be anything that can appear on the left side of an = assignment statement (e.g., for (x, y) in tuplelist:).

Since Python 2.2, this works by first trying to obtain an iterator object I with iter(iterable) and then calling that object’s I.__next__() method repeatedly until StopIteration is raised (I.__next__() is named I.next() in Python 2); see The yield Statement for more on iteration. In earlier versions, or if no iterator object can be obtained (e.g., no __iter__ method is defined), this works instead by repeatedly indexing iterable at successively higher offsets until an IndexError is raised.

The pass Statement

pass

This is a do-nothing placeholder statement, and is used when syntactically necessary. In Python 3.X only, ellipses (...) can achieve similar effects.

The break Statement

break

This immediately exits the closest enclosing while or for loop statement, skipping its associated else (if any).

The continue Statement

continue

This immediately goes to the top of the closest enclosing while or for loop statement; it resumes in the loop header line.

The del Statement

del name
del name[i]
del name[i:j:k]
del name.attribute

The del
statement deletes names, items, slices, and attributes, as well as removes bindings. In the last three forms, name can actually be any expression (with parentheses if required for priority). For instance: del a.b()[1].c.d.

The def Statement

def name([arg,... arg=value,... *arg, **arg]):
 suite

The def
statement makes new functions. It creates a function object and assigns it to variable name. Each call to a function object generates a new, local scope, where assigned names are local to the function call by default (unless declared global). See also the section Namespace and Scope Rules. Arguments are passed by assignment; in a def header, they can be defined by any of the four formats in Table 1-14.

The argument forms in Table 1-14 can also be used in a function call, where they are interpreted as shown in Table 1-15 (see The Expression Statement for more on function call syntax).

Table 1-14. Argument formats in definitions

	
Argument format

	
Interpretation

	
arg

	
Matched by name or position

	
arg=value

	
Default value if arg is not passed

	
*arg

	
Collects extra positional args as a new tuple

	
**arg

	
Collects extra keyword args passed as a new dictionary

	
*name, arg[=value]

	
Python 3.0 keyword-only arguments after *

	*, arg[=value]
	Same as prior line

Table 1-15. Argument formats in calls

	
Argument format

	
Interpretation

	
arg

	
Positional argument

	
arg=value

	
Keyword (match by name) argument

	
*arg

	
Sequence (or other iterable) of positional arguments

	
**arg

	
Dictionary of keyword arguments

Python 3.0 keyword-only arguments

Python 3.0 generalizes function definition to allow keyword-only arguments, which must be passed by keyword, and are required if not coded with defaults. Keyword-only arguments are coded after the *, which may appear without a name if there are keyword-only arguments but not arbitrary positionals:
>>> def f(a, *b, c): print(a, b, c) # c required keyword
...
>>> f(1, 2, c=3)
1 (2,) 3

>>> def f(a, *, c=None): print(a, c) # c optional keyword
...
>>> f(1)
1 None
>>> f(1, c='spam')
1 spam

Python 3.0 function annotations

Python 3.0 also generalizes function definition to allow arguments and return values to be annotated with object values for use in extensions. Annotations are coded as :value after the argument name and before a default, and ->value after the argument list. They are collected into an __annotations__ attribute, but are not otherwise treated as special by Python itself:
>>> def f(a:99, b:'spam'=None) -> float:
... print(a, b)
...
>>> f(88)
88 None
>>> f.__annotations__
{'a': 99, 'b': 'spam', 'return': <class 'float'>}

lambda expressions

Functions can also be created with the lambda expression form which creates a new function object and returns it to be called later, instead of assigning it to a name:
lambda arg, arg,...: expression

In lambda, arg is as in def, expression is the implied return value of later calls. Because lambda is an expression, not a statement, it can be used in places that a def cannot (e.g., within a dictionary literal expression, or an argument list of a function call). Because lambda computes a single expression instead of running statements, it is not intended for complex functions.

Defaults and attributes

Mutable default argument values are evaluated once at def statement time, not on each call, and so can retain state between calls. However, some consider this behavior to be a caveat, and classes and enclosing scope references are often better state-retention tools; use None defaults for mutable and explicit tests to avoid changes as shown in the following’s comments:
>>> def grow(a, b=[]): # ..., b=None)
... b.append(a) # if b == None: b = []
... print(b)
...
>>> grow(1); grow(2)
[1]
[1, 2]

Both Python 2.X and 3.0 also support attachment of arbitrary attributes to functions, as another form of state retention (though attributes support only per-function-object state, which is only per-call if each call generates a new function):
>>> grow.food = 'spam'
>>> grow.food
'spam'

Function and method decorators

As of Python 2.4, function definitions can be preceded by a declaration syntax that describes the function that follows. Known as decorators and coded with an @ character, these declarations provide explicit syntax for functional techniques. The function decorator syntax:
@decorator
def F():
 ...

is equivalent to this manual name rebinding:
def F():
 ...
F = decorator(F)

The effect is to rebind the function name to the result of passing the function through the decorator callable. Function decorators may be used to manage functions, or later calls made to them (by using proxy objects). Decorators may be applied to any function definition, including methods inside a class:
class C:
 @decorator
 def M(): # same as M = decorator(M)
 ...

More generally, the following nested decoration:
@A
@B
@C
def f(): ...

is equivalent to the following nondecorator code:
def f(): ...
f = A(B(C(f)))

Decorators may also take argument lists:
@spam(1,2,3)
def f(): ...

In this case spam must be a function returning a function (known as a factory function); its result is used as the actual decorator. Decorators must appear on the line before a function definition, and cannot be on the same line (e.g., @A def f(): ... is illegal).

Because they accept and return callables, some built-in functions, including property(), staticmethod(), and classmethod(), may be used as function decorators (see Built-in Functions). Decorator syntax is also supported for classes in Python 2.6 and 3.0 and later; see The class Statement.

The return Statement

return [expression]

The return
statement exits the enclosing function and returns an expression value as the result of the call to the function. The expression defaults to None if it’s omitted. Hint: return a tuple for multiple-value function results.

The yield Statement

yield expression

The yield expression, commonly coded as an expression statement (on a line by itself), suspends function state and returns an expression. On the next iteration, the function’s prior state is restored, and control resumes immediately after the yield statement. Use a return statement with no value to end the iteration, or simply fall off the end of the function:
def generateSquares(N):
 for i in range(N):
 yield i ** 2

>>> G = generateSquares(5)
>>> list(G) # force results generation
[0, 1, 4, 9, 16]

When used as an expression, yield returns the object passed to the generator’s send() method at the caller (e.g., A = yield X), and must be enclosed in parenthesis unless it is the only item on the right of = (e.g., A = (yield X) + 42). In this mode, values are sent to a generator by calling send(value); the generator is resumed, and the yield expression returns value. If the regular __next__() method or next() built-in function is called to advance, yield returns None.

Generators also have a throw(type) method to raise an exception inside the generator at the latest yield, and a close() method that raises a new GeneratorExit exception inside the generator to terminate the iteration. yield is standard as of version 2.3 and later; generator send(), throw(), and close() methods are available as of Python 2.5.

Generators and iterators

Functions containing a yield statement are compiled as generators; when called, they return a generator object that supports the iterator protocol to produce results on demand. Iterators
are objects returned by the iter(X) built-in function; they define a __next__() method, which returns the next item in the iteration or raises a StopIteration exception to end the iteration.

All iteration contexts including for loops and comprehensions automatically use the iteration protocol to step through collections. In addition, the next(I) built-in function automatically calls I.__next__() to simplify manual iteration loops.

Classes can provide an __iter__() method to intercept the iter(X) built-in function call; if defined, its result has a __next__() method used to step through results in iteration contexts. If no __iter__() is defined, the __getitem__() indexing method is used as a fallback to iterate until IndexError.

In Python 2.X, the I.__next__() method is named I.next(), but iteration works the same otherwise. The next() function calls the I.next() method in 2.6. See also Generator expressions for related tools.

The global Statement

global name [, name]*

The global
statement is a namespace declaration: when used inside a class or function definition statement, it causes all appearances of name in that context to be treated as references to a global (module-level) variable of that name—whether name is assigned or not, and whether name already exists or not.

This statement allows globals to be created or changed within a function or class. Because of Python’s scope rules, you need to declare only global names that are assigned; undeclared names are made local if assigned, but global references are automatically located in the enclosing module. See also Namespace and Scope Rules.

The nonlocal Statement

nonlocal name [, name]*

Available in Python 3.0 only.

The nonlocal
statement is a namespace declaration: when used inside a nested function, it causes all appearances of name in that context to be treated as references to a local variable of that name in an enclosing function’s scope—whether name is assigned or not.

name must exist in an enclosing function; this statement allows it to be changed by a nested function. Because of Python’s scope rules, you need to declare only nonlocal names that are assigned; undeclared names are made local if assigned, but nonlocal references are automatically located in enclosing functions. See also Namespace and Scope Rules.

The import Statement

import module [, module]*
import [package.]* module [, [package.]* module]*
import [package.]* module as name
 [, [package.]*module as name]*

The import
statement provides module access: it imports a module as a whole. Modules in turn contain names fetched by qualification (e.g., module.attribute). Assignments at the top level of a Python file create module object attributes. The as clause assigns a variable name to the imported module object; it is useful to provide shorter synonyms for long module names.

module names the target module—usually a Python source file or compiled module—which must be located in a directory in sys.path. The module is given without its filename suffix (.py and other extensions are omitted). The sys.path module import search path is a directory list initialized from the program’s top-level directory, PYTHONPATH settings, .pth path file contents, and Python defaults.

Import operations compile a file’s source to byte-code if needed (and save it in a .pyc file if possible), then execute the compiled code from top to bottom to generate module object attributes by assignment. Use the imp.reload() built-in function to force recompilation and execution of already-loaded modules; see also __import__ used by import in the section Built-in Functions.

In the Jython implementation, imports can also name Java class libraries; Jython generates a Python module wrapper that interfaces with the Java library. In standard CPython, imports can also load compiled C and C++ extensions.

Package imports

If used, the package prefix names give enclosing directory names, and module dotted paths reflect directory hierarchies. An import of the form import dir1.dir2.mod generally loads the module file at directory path dir1/dir2/mod.py, where dir1 must be contained by a directory listed on the module search path sys.path.

Each directory listed in an import statement must have a (possibly empty) __init__.py file that serves as the directory level’s module namespace. This file is run on the first import through the directory, and all names assigned in __init__.py files become attributes of the directory’s module object. Directory packages can resolve conflicts caused by the linear nature of PYTHONPATH.

See also Package relative import syntax.

The from Statement

from [package.]* module import name [, name]*
from [package.]* module import *
from [package.]* module import name as othername
from [package.]* module import (name1, name2, ...)

The from
statement imports variable names from a module so that you can use those names later without the need to qualify them with their module name. The from mod import * format copies all names assigned at the top level of the module, except names with a single leading underscore or names not listed in the module’s __all__ list-of-strings attribute (if defined).

If used, the as clause creates a name synonym. If used, package import paths work the same as in import statements (e.g., from dir1.dir2.mod import X), but the package path needs to be listed only in the from itself. Due to new scoping rules, the * format generates warnings in version 2.2 if it appears nested in a function or class (this generates errors in Python 3.0).

As of Python 2.4, the names being imported from a module can be enclosed in parentheses to span multiple lines without backslashes. As of Python 3.0, from module import * form is invalid within a function, because it makes it impossible to classify name scopes at definition time.

The from statement is also used to enable future (but still experimental) language additions, with from __future__ import
featurename. This format must appear only at the top of a module file (preceded only by an optional doc string).

Package relative import syntax

In Python 3.0, the from statement (but not import) may use leading dots in module names to specify that imports be relative to the package directory in which the importing module resides:
from module import name [, name]* # sys.path: abs
from . import module [, module]* # pkg dir only: rel
from .module import name [, name]* # pkg dir only: rel
from .. import module [, module]* # parent dir in pkg
from ..module import name [, name]* # parent dir in pkg

The leading-dots syntax works to make imports explicitly package-relative in both Python 3.0 and 2.6. For imports without the dots syntax, the package’s own directory is searched first in Python 2.6, but not in Python 3.0. To enable Python 3.0 package import semantics in Python 2.6, use:
from __future__ import absolute_import

Absolute package imports, relative to a directory on sys.path, are generally preferred over both implicit package-relative imports in Python 2.X, and explicit package-relative import syntax in both Python 2.X and 3.0.

The class Statement

class name [(super [, super]* [, metaclass=M])]:
 suite

The class
statement makes new class objects, which are factories for instance objects. The new class object inherits from each listed super class in the order given, and is assigned to variable name. The class statement introduces a new local name scope, and all names assigned in the class statement generate class object attributes shared by all instances of the class.

Important class features include the following (see also the sections Object-Oriented Programming and Operator Overloading Methods):

	Superclasses (also known as base classes) from which a new class inherits attributes are listed in parentheses in the header (e.g., class Sub(Super1, Super2):).

	Assignments in the suite generate class attributes inherited by instances: nested def statements make methods, while assignment statements make simple class members, etc.

	Calling the class generates instance objects. Each instance object may have its own attributes, and inherits the attributes of the class and all of its superclasses.

	Method functions receive a special first argument, usually called self, which is the instance object that is the implied subject of the method call, and gives access to instance state information attributes.

	Specially named __X__ method definitions intercept built-in operations.

Class decorators in Python 2.6 and 3.0

In Python 2.6, 3.0, and later, decorator syntax can be applied to class statements, in addition to function definitions. The class decorator syntax:
@decorator
class C:
 def meth():
 ...

is equivalent to this manual name rebinding:
class C:
 def meth():
 ...
C = decorator(C)

The effect is to rebind the class name to the result of passing the class through the decorator callable. Like function decorators, class decorators may be nested and support decorator arguments. Class decorators may be used to manage classes, or later instance-creation calls made to them (by using proxy objects).

Metaclasses

Metaclasses are classes that generally subclass from the type class, in order to customize creation of class objects themselves:
class Meta(type):
 def __new__(meta, cname, supers, cdict):
 # run by inherited type.__call__
 return type.__new__(meta, cname, supers, cdict)

In Python 3.0, classes define their metaclasses using keyword arguments in class headers:
class C(metaclass=Meta): ...

In Python 2.X, use class attributes instead:
class C:
 __metaclass__ = Meta
 ...

See also type() in Built-in Functions for the mapping from class statements.

The try Statement

try:
 suite
except [type [as value]]: # [, value] in Python 2
 suite
[except [type [as value]]:
 suite]*
[else:
 suite]
[finally:
 suite]

try:
 suite
finally:
 suite

The try
statement catches exceptions. try statements can specify except clauses with suites that serve as handlers for exceptions raised during the try suite, else clauses that run if no exception occurs during the try suite, and finally clauses that run whether an exception happens or not. except clauses catch and recover from exceptions, and finally clauses define termination actions.

Exceptions can be raised by Python, or explicitly (see also the raise statement discussed in the next section, The raise Statement). In except clauses, type is an expression giving the exception class to be caught, and an extra variable name value can be used to intercept the instance of the exception class that was raised. Table 1-16 lists all the clauses that can appear in a try statement.

The try must have either an except or a finally, or both. The order of its parts must be: try→except→else→finally, where the else and finally are optional, and there may be zero or more except, but there must be at least one except if an else appears. finally interacts correctly with return, break, and continue (if any of these pass control out of the try block, the finally clause is executed on the way out).

Table 1-16. try statement clause formats

	
Clause format

	
Interpretation

	
except:

	
Catch all (or all other) exceptions

	
except
type:

	
Catch a specific exception only

	
except
type
as
value:

	
Catch exception and its instance

	
except (type1,
type2):

	
Catch any of the exceptions

	
except (type1,
type2) as
value:

	
Catch any of the exceptions and its instance

	
else:

	
Run if no exceptions are raised

	
finally:

	
Always run this block on the way out

Common variations include the following:

except
classname
as X:

Catch a class exception, and assign X to the raised instance. X gives access to any attached state information attributes, print strings, or callable methods on the instance raised. For older string exceptions, X is assigned to the extra data passed along with the string (string exceptions are removed in Python 3.0 and 2.6).

except (type1,
type2,
type3) as
X:

Catch any of the exceptions named in a tuple, and assign X to the extra data.

See also the sys.exc_info() call in The sys Module for generic access to the exception class and instance (a.k.a., type and value) after an exception is raised.

Python 2.X try statement forms

In Python 2.X, try statements work as described, but the as clause used in except handlers to access the raised instance is coded with a comma instead:

except
classname, X:

Catch a class exception, and assign X to the raised instance.

except (name1, name2, name2),
X:

Catch any of the exceptions, and assign X to the extra data.

The raise Statement

In Python 3.0, the raise
statement takes the following forms:

raise
instance
[from
otherexc]

Raise a manually created instance of a class (e.g., raise Error(args)).

raise
class
[from
otherexc]

Make and raise a new instance of class (equivalent to raise
class()).

raise

Re-raise the most recent exception.

The raise statement triggers exceptions. You can use it to explicitly raise either built-in exceptions, or user-defined exceptions. Without arguments, raise re-raises the most recent exception. See also Built-in Exceptions for exceptions raised by Python.

On a raise, control jumps to the matching except clause of the most recently entered matching try statement, or to the top level of the process (where it ends the program and prints a standard error message). The instance object raised is assigned to the as variable in the matching except clause (if given).

The optional from clause allows exception chaining in Python 3.0 (only): otherexc is another exception class or instance, and is attached to the raised exception’s __cause__ attribute. If the raised exception is not caught, Python prints both exceptions as part of the standard error message.

Class exceptions

In Python 3.0 and 2.6 all exceptions are identified by classes, which must be derived from the built-in Exception class (in 2.6 this derivation is required of new-style classes only). The Exception superclass provides default display strings and constructor argument retention in tuple attribute args.

Class exceptions support exception categories, which can be easily extended. Because try statements catch all subclasses when they name a superclass, exception categories can be modified by altering the set of subclasses without breaking existing
try statements. The raised instance object also provides storage for extra information about the exception:
class General(Exception):
 def __init__(self, x):
 self.data = x

class Specific1(General): pass
class Specific2(General): pass

try:
 raise Specific1('spam')
except General as X:
 print(X.data) # prints 'spam'

Python 2.X raise statement forms

Prior to Python 2.6, Python 2.X allows exceptions to be identified with both strings and classes. Because of this, its raise statements may take the following forms, many of which exist for backward compatibility:

raise
string

Matches an except handler clause that names the raised string object.

raise
string, data

Passes an extra data object with an exception (the default is None); it is assigned to variable X in an except string, X: try statement clause.

raise
instance

This is the same as raise instance.__class__, instance.

raise
class, instance

Matches an except that names this class, or any of its superclasses. Passes the class instance object as extra exception data, to be assigned to X in an except
class, X:.

raise
class

Same as raise
class() (makes an instance of class).

raise
class, arg

Same as raise
class(arg) (makes an instance of class from non-instance arg).

raise
class, (arg
[,
arg]*)

Same as raise
class(arg,
arg, ...) (makes an instance of class).

raise

Re-raises the current exception.

String exceptions were deprecated as of (and issues warnings in) Python 2.5. Python 2.X also allows a third item in raise statements, which must be a traceback object used instead of the current location as the place where the exception occurred.

The assert Statement

assert expression [, message]

The assert
statement performs debugging checks. If expression is false, it raises AssertionError, passing message as an extra data item if specified. The -O command-line flag removes assertions (their tests are not run).

The with Statement

with expression [as variable]: # Python 2.6 and 3.0
 suite

with expression [as variable]
 [, expression [as variable]]*: # 3.1
 suite

The with
statement wraps a nested block of code in a context manager, which ensures that block entry and/or exit actions are run. This is an alternative to try/finally for objects having context managers that perform termination actions whether exceptions are raised or not.

expression is assumed to return an object that supports the context management protocol. This object may also return a value that will be assigned to the name variable if the optional as clause is present. Classes may define custom context managers, and some built-in types such as files and threads provide context managers with exit actions that close files, release thread locks, etc.:
with open(r'C:\misc\script', 'w') as myfile:
 ...process myfile, auto-closed on statement exit...

See Files for more details on file context manager usage, and Python manuals for other built-in types that support this protocol and statement, as well as details on the protocol itself.

This statement is supported as of Python 2.6 and 3.0, and may be enabled in 2.5 with the following:
from __future__ import with_statement

Multiple context managers in Python 3.1

In Python 3.1, this statement may also specify multiple (a.k.a. nested) context managers. Any number of context manager items may be separated by commas, and multiple items work the same as nested with statements. In general, the 3.1 and later code:
with A() as a, B() as b:
 ...statements...

is equivalent to the following, which works in 3.1, 3.0, and 2.6:
with A() as a:
 with B() as b:
 ...statements...

For example, in the following code both files’ exit actions are automatically run when the statement block exits, regardless of exception outcomes:
with open('data') as fin, open('results', 'w') as fout:
 for line in fin:
 fout.write(transform(line))

Python 2.X Statements

Python 2.X supports the print statement described above, does not support nonlocal, and does not support with until 2.6. In addition, raise, try, and def have the slightly different syntaxes in Python 2.X as noted above.

The following additional statement is available in Python 2.X only:
exec codestring [in globaldict [, localdict]]

The exec
statement compiles and runs code strings. codestring is any Python statement (or multiple statements separated by newlines) as a string; it is run in a namespace containing the exec, or the global/local namespace dictionaries if specified (localdict defaults to globaldict). codestring can also be a compiled code object. Also see compile(), eval(), and the Python 2.X execfile() in Built-in Functions.

In Python 3.0, this statement becomes the exec() function (see Built-in Functions). The backward- and forward-compatible syntax exec(a, b, c) is also accepted in Python 2.

Namespace and Scope Rules

This section discusses rules for name binding and lookup (see also the sections Name format and Name conventions). In all cases, names are created when first assigned but must already exist when referenced. Qualified and unqualified names are resolved differently.

Qualified Names: Object Namespaces

Qualified names (X, in object.X) are known as attributes and live in object namespaces. Assignments in some lexical scopes[4] initialize object namespaces (modules, classes).

Assignment: object.X = value

Creates or alters the attribute name X in the namespace of the object being qualified.

Reference: object.X

Searches for the attribute name X in the object, then all accessible classes above it (for instances and classes). This is the definition of inheritance.

Unqualified Names: Lexical Scopes

Unqualified names (X) involve lexical scope rules. Assignments bind such names to the local scope unless they are declared global.

Assignment: X = value

Makes name X local by default: creates or changes name X in the current local scope. If X is declared global, this creates or changes name X in the enclosing module’s scope. If X is declared nonlocal in Python 3.0, this changes name X in an enclosing function’s scope. Local variables are stored in the call stack at runtime for quick access.

Reference: X

Looks for name X in at most four scope categories: in the current local scope (function); then in the local scopes of all lexically enclosing functions (if any, from inner to outer); then in the current global scope (module); then in the built-in scope (which corresponds to module builtins in Python 3.0, and module __builtin__ in Python 2.X). Local and global scope contexts are defined in Table 1-17. global declarations make the search begin in the global scope instead, and nonlocal declarations restrict the search to enclosing functions.

Table 1-17. Unqualified name scopes

	
Code context

	
Global scope

	
Local scope

	
Module

	
Same as local

	
The module itself

	
Function, method

	
Enclosing module

	
Function call

	
Class

	
Enclosing module

	
class statement

	
Script, interactive mode

	
Same as local

	
module __main__

	
exec(), eval()

	
Caller’s global (or passed in)

	
Caller’s local (or passed in)

Statically Nested Scopes

The enclosing functions search of the last rule in the previous section (Reference: X) is called a statically nested scope, and was made standard in version 2.2. For example, the following function now works because the reference to x within f2 has access to the scope of f1:
def f1():
 x = 42
 def f2():
 print(x)
 f2()

In Python versions prior to 2.2, this function fails because name x is not local (in f2’s scope), global (in the module enclosing f1), or built-in. To make such cases work prior to version 2.2, default arguments retain values from the immediately enclosing scope (defaults are evaluated before entering a def):
def f1():
 x = 42
 def f2(x=x):
 print(x)
 f2()

This rule also applies to lambda expressions, which imply a nested scope just like def and are more commonly nested in practice:
def func(x):
 action = (lambda n: x ** n) # works as of 2.2
 return action

def func(x):
 action = (lambda n, x=x: x ** n) # use before 2.2
 return action

Defaults are still sometimes needed to reference loop variables when creating functions inside loops (they reflect their final loop value). Scopes nest arbitrarily, but only enclosing functions (not classes) are searched:
def f1():
 x = 42
 def f2():
 def f3():
 print(x) # found in f1's scope
 f3()
 f2()

[4] Lexical scopes refer to physically (syntactically) nested code structures in a program’s source code.

Object-Oriented Programming

Classes are Python’s main object-oriented programming (OOP) tool. They support multiple instances, attribute inheritance, and operator overloading.

Classes and Instances

Class objects provide default behavior

	The class statement creates a class object and assigns it to a name.

	Assignments inside class statements create class attributes, which are inherited object state and behavior.

	Class methods are nested defs, with special first arguments to receive the implied subject instance.

Instance objects are generated from classes

	Calling a class object like a function makes a new instance object.

	Each instance object inherits class attributes and gets its own attribute namespace.

	Assignments to attributes of the first argument (e.g., self.X = V) in methods create per-instance attributes.

Inheritance rules

	Inheritance happens at attribute qualification time: on object.attribute, if object is a class or instance.

	Classes inherit attributes from all classes listed in their class statement header line (superclasses). Listing more than one means multiple inheritance.

	Instances inherit attributes from the class from which they are generated, plus all that class’s superclasses.

	Inheritance searches the instance, then its class, then all accessible superclasses, and uses the first version of an attribute name found. Superclasses are searched depth-first and then left-to-right (but new-style classes search across before proceeding up in diamond pattern trees).

Pseudoprivate Attributes

By default, all attribute names in modules and classes are visible everywhere. Special conventions allow some limited data-hiding but are mostly designed to prevent name collisions (see also the section Name conventions).

Module privates

Names in modules with a single underscore (e.g., _X), and those not listed on the module’s __all__ list, are not copied over when a client uses from module import *. This is not strict privacy, though, as such names can still be accessed with other import statement forms.

Class privates

Names anywhere within class statements with two leading underscores only (e.g., __X) are mangled at compile time to include the enclosing class name as a prefix (e.g., _Class__X). The added class-name prefix localizes such names to the enclosing class and thus makes them distinct in both the self instance object and the class hierarchy.

This helps to avoid clashes that may arise for same-named methods, and for attributes in the single instance object at the bottom of the inheritance chain (all assignments to self.attr anywhere in a framework change the single instance namespace). This is not strict privacy, though, as such attributes can still be accessed via the mangled name.

New Style Classes

In Python 3.0, there is a single class model: all classes are considered new-style whether they derive from object or not. In Python 2.X, there are two class models: classic (the default), and new-style in version 2.2 and later (coded by deriving from a built-in type or object—class A(object)).

New-style classes (and all classes in Python 3.0) differ from classic classes in the following ways:

	Diamond patterns of multiple inheritances have a slightly different search order—roughly, they are searched across before up, and more breadth-first than depth-first.

	Classes are now types, and types are now classes. The type(I) built-in returns the class an instance is made from, instead of a generic instance type, and is normally the same as I.__class__. The type class may be subclassed to customize class creation, and all classes inherit from object.

	The __getattr__ and __getattribute__ methods are no longer run for attributes implicitly fetched by built-in operations. They are not called for __X__
operator -overloading method names; the search for such names begins at classes, not instances. To intercept and delegate access to such method names, they generally must be redefined in wrapper/proxy classes.

	New-style classes have a set of new class tools, including slots, properties, descriptors, and the __getattribute__ method. Most of these have tool-building purposes. See the next section for __slots__, __getattribute__, and descriptor __get__, __set__, and __delete__ methods; see Built-in Functions for property().

Operator Overloading Methods

Classes intercept and implement built-in operations by providing specially named method functions, all of which start and end with two underscores. These names are not reserved and can be inherited from superclasses as usual. Python locates and calls at most one per operation.

Python automatically calls a class’s overloading methods when instances appear in expressions and other contexts. For example, if a class defines a method named __getitem__, and X is an instance of this class, the expression X[i] is equivalent to the method call X.__getitem__(i).

Overloading method names are sometimes arbitrary: a class’s __add__ method need not perform an addition (or concatenation). Moreover, classes generally can mix numeric and collection methods and mutable and immutable operations. Most operator overloading names have no defaults, and the corresponding operation raises an exception if its method is not defined.

For All Types

__new__(cls [, args...])

Called to create and return a new instance of class cls. Receives constructor arguments passed to the class. If this returns an instance of the class, the instance’s __init__
method is invoked with the same constructor arguments. Not used in normal classes; intended to allow subclasses of immutable types to customize instance creation, and to allow custom metaclasses to customize class creation.

__init__(self [, arg]*)

Invoked on class(args...). This is the constructor that initializes the new instance, self. When run for calls to a class name, self is provided automatically; arg is the arguments passed to the class name, and may be any function-definition argument form (see The Expression Statement and The def Statement). Must return no value, and call superclass __init__ manually if needed, passing the instance to self.

__del__(self)

Invoked on instance garbage collection. This destructor method cleans up when an instance is freed. Embedded objects are automatically freed when the parent is (unless referenced from elsewhere). Exceptions during this method’s run are ignored, and simply print messages to sys.stderr. The try/finally statement allows more predictable termination actions for a code block.

__repr__(self)

Invoked on repr(self), and interactive echoes, (and `self` in Python 2.X only). Also invoked on str(self) and print(self) if there is no __str__. This method returns a low-level “as code” string representation of self.

__str__(self)

Invoked on str(self) and print(self) (or uses __repr__ as a backup if defined). This method returns a high-level “user friendly” string representation of self.

__format__(self, formatspec)

Called by the format() built-in function (and by extension, the str.format() method of str strings) to produce a “formatted” string representation of an object. See Strings and Built-in Functions. New in Python 2.6 and 3.0.

__hash__(self)

Invoked on dictionary[self] and hash(self), and other hashed collection operations, including those of the set object type. This method returns a unique and unchanging integer hash-key.

__bool__(self)

Called for truth value testing and the built-in bool() function; returns False or True. When __bool__() is not defined, __len__() is called if it is defined and designates a true value with a nonzero length. If neither __len__() nor __bool__() is defined, all its instances are considered true. New in Python 3.0; in Python 2.X, this method is named __nonzero__ instead of __bool__, but works the same way.

__call__(self [, arg]*)

Invoked on self(args...), when an instance is called like a function. arg may take any function-definition argument form (see The Expression Statement and The def Statement). For example, __call__(self, a, b, c, d=5) and __call__(self, *pargs, **kargs) both match calls self(1, 2, 3, 4) and self(1, *(2,), c=3, **dict(d=4)).

__getattr__(self, name)

Invoked on self.name, when name is an undefined attribute access (this method is not called if name exists in or is inherited by self). name is a string. This method returns an object or raises AttributeError.

In Python 3.0, this is no longer run for __X__ attributes implicitly fetched by built-in operations; redefine such names in wrapper/proxy classes.

__setattr__(self, name, value)

Invoked on self.name=value (all attribute assignments). Hint—assign through __dict__ key to avoid recursive loops: self.attr=x statement within a __setattr__ calls __setattr__ again, but self.__dict__['attr']=x does not. Recursion may also be avoided by calling the superclass version explicitly: object.__setattr__(self, name, value).

__delattr__(self, name)

Invoked on del self.name (all attribute deletions). Hint: must avoid recursive loops by routing attribute deletions through __dict__ or a superclass, much like __setattr__.

__getattribute__(self, name)

Called unconditionally to implement attribute accesses for instances of the class. If the class also defines __getattr__, it will never be called (unless it is called explicitly). This method should return the (computed) attribute value or raise an AttributeError exception. To avoid infinite recursion in this method, its implementation should always call the superclass method with the same name to access any attributes it needs (e.g., object.__getattribute__(self, name).

In Python 3.0, this is no longer run for __X__ attributes implicitly fetched by built-in operations; redefine such names in wrapper/proxy classes.

__lt__(self, other)
__le__(self, other)
__eq__(self, other)
__ne__(self, other)
__gt__(self, other)
__ge__(self, other)

Respectively, used on self < other, self <= other, self == other, self != other, and self > other, self >= other. Added in version 2.1, these are known as rich comparison methods and are called for all comparison expressions in Python 3.0. For example, X < Y calls X.__lt__(Y) if defined. In Python 2.X only, these methods are called in preference to __cmp__, and __ne__ is also run for self <> other.

These methods can return any value, but if the comparison operator is used in a Boolean context, the return value is interpreted as a Boolean result for the operator. These methods can also return (not raise) the special object NotImplemented if not supported for the operands (which works as though the method were not defined at all, and which forces Python 2.X to revert to the general __cmp__ method if defined).

There are no implied relationships among comparison operators. For example, x==y being true does not imply that x!=y is false: __ne__ should be defined along with __eq__ if the operators are expected to behave symmetrically. There are also no right-side (swapped-argument) versions of these methods to be used when the left argument does not support the operation but the right argument does. __lt__ and __gt__ are each other’s reflection, __le__ and __ge__ are each other’s reflection, and __eq__ and __ne__ are their own reflections. Use __lt__ for sorting in Python 3.0.

__slots__

This class attribute can be assigned a string, iterable, or sequence of strings giving the names of attributes of instances of the class. If defined in a new-style class (including all classes in Python 3), __slots__ reserves space for the declared attributes, and prevents the automatic creation of __dict__ for each instance (unless string '__dict__' is included in __slots__, in which case instances also have a __dict__ and attributes not named in __slots__ may be added dynamically).

To support classes with __slots__, tools that generically list attribute or access then by string name must use storage-neutral tools such as the getattr(), setattr(), and dir(), which apply to both __dict__ and __slots__ attribute storage. Both attribute sources may need to be queried.

__dir__(self)

Called on dir(self). Returns a list of attribute names. New in Python 3.0.

For Collections (Sequences, Mappings)

__len__(self)

Invoked on len(self) and possibly for truth-value tests. This method returns a collection’s size. For Boolean tests, Python looks for __bool__ first, then __len__, and then considers the object true (__bool__ is named __nonzero__ in Python 2). Zero length means false.

__contains__(self, item)

Invoked on item in self for custom membership tests (otherwise, membership uses __iter__, if defined, or __getitem__). This method returns a true or false result.

__iter__(self)

Invoked on iter(self). New in version 2.2, this method is part of the iteration protocol. It returns an object with a __next__() method (possibly self). The result object’s __next__() method is then called repeatedly in all iteration contexts (e.g., for loops), and should return the next result or raise StopIteration to terminate the results progression. See also sections The for Statement and The yield Statement. If no __iter__ is defined, iteration falls back on __getitem__. In Python 2.X, __next__() is named next().

__next__(self)

Invoked by the next(self) built-in function, and by all iteration contexts to advance through results. See __iter__() for usage details. New in Python 3.0; in Python 2.X, this method is named next(), but works the same way.

__getitem__(self, key)

Invoked on self[key], self[i:j:k], x in self, and for x in self (and all iteration contexts). This method implements all indexing-related operations. Iteration contexts (e.g., in and for) repeatedly index from 0 until IndexError, unless __iter__ is defined.

In Python 3.0, this and the following two methods are also called for slice operations, in which case key is a slice object. Slice objects may be propagated to another slice expression, and have attributes start, stop, and step, any of which can be None. See also slice() in Built-in Functions.

__setitem__(self, key, value)

Invoked on self[key]=value, self[i:j:k]=value. This method is called for assignment to a collection key or index, or to a sequence’s slice.

__delitem__(self, key)

Invoked on del self[key], del self[i:j:k]. This method called is for index/key and sequence slice deletion.

__reversed__(self)

Called if defined by the reversed() built-in function to implement custom reverse iteration. Returns a new iterator object that iterates over all the objects in the container in reverse order. If no __reversed__ is defined, reversed() expects and uses sequence protocol (methods __len__() and __getitem__()).

For Numbers (Binary Operators)

If one of those methods does not support the operation with the supplied arguments, it should return (not raise) the built-in NotImplemented object (which works as though the method were not defined at all).

Basic binary methods

__add__(self, other)

Invoked on self + other for numeric addition or sequence concatenation.

__sub__(self, other)

Invoked on self - other.

__mul__(self, other)

Invoked on self * other for numeric multiplication or sequence repetition.

__truediv__(self, other)

Invoked on self / other for all division (which retains remainders) in Python 3.0. In Python 2.X only, __div__ is called for classic division (where integer division truncates).

__floordiv__(self, other)

Invoked on self // other for truncating (always) division.

__mod__(self, other)

Invoked on self % other.

__divmod__(self, other)

Invoked on divmod(self, other).

__pow__(self, other [, modulo])

Invoked on pow(self, other [, modulo]) and self ** other.

__lshift__(self, other)

Invoked on self << other.

__rshift__(self, other)

Invoked on self >> other.

__and__(self, other)

Invoked on self & other.

__xor__(self, other)

Invoked on self ^ other.

__or__(self, other)

Invoked on self | other.

Right-side binary methods

__radd__(self, other)
__rsub__(self, other)
__rmul__(self, other)
__rtruediv__(self, other)
__rfloordiv__(self, other)
__rmod__(self, other)
__rdivmod__(self, other)
__rpow__(self, other)
__rlshift__(self, other)
__rrshift__(self, other)
__rand__(self, other)
__rxor__(self, other)
__ror__(self, other)

These are right-side counterparts to the binary operators of the prior section. Binary operator methods have a right-side variant that starts with an r prefix (e.g., __add__ and __radd__). Right-side variants have the same argument lists, but self is on the right side of the operator. For instance, self + other calls self.__add__(other), but other + self invokes self.__radd__(other).

The r right-side method is called only when the instance is on the right and the left operand is not an instance of a class that implements the operation:

	instance + noninstance runs __add__

	instance + instance runs __add__

	noninstance + instance runs __radd__

If two different class instances that overload the operation appear, the class on the left is preferred. __radd__ often converts or swaps order and re-adds to trigger __add__.

Augmented binary methods

__iadd__(self, other)
__isub__(self, other)
__imul__(self, other)
__itruediv__(self, other)
__ifloordiv__(self, other)
__imod__(self, other)
__ipow__(self, other[, modulo])
__ilshift__(self, other)
__irshift__(self, other)
__iand__(self, other)
__ixor__(self, other)
__ior__(self, other)

These are augmented assignment (in-place) methods. Respectively, they are called for the following assignment statement formats: +=, -=, *=, /=, //=, %=, **=, <<=, >>=, &=, ^=, and |=. These methods should attempt to do the operation in-place (modifying self) and return the result (which can be self). If a method is not defined, then the augmented operation falls back on the normal methods. To evaluate X += Y, where X is an instance of a class that has an __iadd__, x.__iadd__(y) is called. Otherwise, __add__ and __radd__ are considered.

For Numbers (Other Operations)

__neg__(self)

Invoked on -self.

__pos__(self)

Invoked on +self.

__abs__(self)

Invoked on abs(self).

__invert__(self)

Invoked on ˜self.

__complex__(self)

Invoked on complex(self).

__int__(self)

Invoked on int(self).

__float__(self)

Invoked on float(self).

__round__(self [, n])

Invoked on round(self [, n]). New in Python 3.0.

__index__(self)

Called to implement operator.index(). Also called in other contexts where Python requires an integer object. This includes instance appearances as indexes, as slice bounds, and as arguments to the built-in bin(), hex(), and oct() functions. Must return an integer.

Similar in Python 3.0 and 2.6, but not called for hex() and oct() in 2.6 (these require __hex__ and __oct__ methods in 2.6). In Python 3.0, __index__ subsumes and replaces the __oct__ and __hex__ methods of Python 2.X, and the returned integer is formatted automatically.

For Descriptors

The following methods apply only when an instance of a class defining the method (a descriptor class) is assigned to a class attribute of another class (known as the owner class). These methods are invoked for access to the attribute in the owner class whose name is assigned to the descriptor class instance.

__get__(self, instance, owner)

Called to get the attribute of the owner class or of an instance of that class. owner is always the owner class; instance is the instance the attribute was accessed through, or None when the attribute is accessed through the owner class directly. Return the attribute value or raise AttributeError.

__set__(self, instance, value)

Called to set the attribute on an instance of the owner class to a new value.

__delete__(self, instance)

Called to delete the attribute on an instance of the owner class.

For Context Managers

The following methods implement the context manager protocol, used by the with statement (see The with Statement).

__enter__(self)

Enter the runtime context related to this object. The with statement assigns this method’s return value to the target specified in the as clause of the statement (if any).

__exit__(self, exc_type, exc_value, traceback)

Exit the runtime context related to this object. The parameters describe the exception that caused the context to be exited. If the context exited without an exception, all three arguments are None. Return a true value to prevent a raised exception from being propagated by the caller.

Python 2.X Operator Overloading Methods

Methods in Python 3.0 only

The following methods are supported in Python 3.0 but not Python 2.X:

	__bool__ (use method name __nonzero__ in Python 2.X, or __len__)

	__next__ (use method name next in Python 2.X)

	__truediv__ (available in Python 2.X only if true division is enabled)

	__dir__

	__round__

	__index__ for oct(), hex() (use __oct__, __hex__ in Python 2.X)

Methods in Python 2.X only

The following methods are supported in Python 2.X but not Python 3.0:

__cmp__(self, other) (and __rcmp__)

Invoked on self > x, x == self, cmp(self, x), etc. This method is called for all comparisons for which no more specific method (such as __lt__) is defined or inherited. It returns −1, 0, or 1 for self less than, equal to, or greater than other. If no rich comparison or __cmp__ methods are defined, class instances compare by their identity (address in memory). The __rcmp__ right-side method is no longer supported as of version 2.1.

In Python 3.0, use the more specific comparison methods described earlier: __lt__, __ge__, __eq__, etc. Use __lt__ for sorting in Python 3.0.

__nonzero__(self)

Invoked on truth-value (otherwise, uses __len__ if defined).

In Python 3.0, this method is renamed __bool__.

__getslice__(self, low, high)

Invoked on self[low:high] for sequence slicing. If no __getslice__ is found, and for extended three-item slices, a slice object is created and passed to the __getitem__ method instead.

In Python 2.X, this and the next two methods are considered deprecated but are still supported—they are called for slice expressions if defined, in preference to their item-based counterparts. In Python 3.0, these three methods are removed entirely—slices always invoke __getitem__, __setitem__, or __delitem__ instead, with a slice object as its argument. See slice() in Built-in Functions.

__setslice__(self, low, high, seq)

Invoked on self[low:high]=seq for sequence slice assignment.

__delslice__(self, low, high)

Invoked on del self[low:high] for sequence slice deletion.

__div__(self, other) (and __rdiv__, __idiv__)

Invoked on self / other, unless true division is enable with from (in which case __truediv__ is used). In Python 3.0, these are always subsumed by __truediv__, __rtruediv__, and __itruediv__ because / is always true division.

__long__(self)

Invoked on long(self). In Python 3.0, the int type subsumes the long type completely.

__oct__(self)

Invoked on oct(self). This method returns an octal string representation. In Python 3.0, return an integer for __index__() instead.

__hex__(self)

Invoked on hex(self). This method returns a hex string representation. In Python 3.0, return an integer for __index__() instead.

__coerce__(self, other)

Invoked on the mixed-mode arithmetic expression, coerce(). This method returns a tuple of (self, other) converted to a common type. If __coerce__ is defined, it is generally called before any real operator methods are tried (e.g., before __add__). It should return a tuple containing operands converted to a common type (or None if it can’t convert). See the Python Language Reference (http://www.python.org/doc/) for more on coercion rules.

__metaclass__

Class attribute assigned to class’s metaclass. In Python 3.0, use metaclass=M keyword argument syntax in the class header line.

Built-in Functions

All built-in names (functions, exceptions, and so on) exist in the implied outer built-in scope, which corresponds to the builtins module (named __builtin__ in Python 2). Because this scope is always searched last on name lookups, these functions are always available in programs without imports. However, their names are not reserved words and might be hidden by assignments to the same name in global or local scopes.

abs(N)

Returns the absolute value of a number N.

all(iterable)

Returns True only if all elements of the iterable are true.

any(iterable)

Returns True
only if any element of the iterable is true.

ascii(object)

Like repr(), returns a string containing a printable representation of an object, but escapes the non-ASCII characters in the repr() result string using \x, \u, or \U escapes. This result is similar to that returned by repr() in Python 2.X.

bin(N)

Convert an integer number to a binary (base 2) digits string. The result is a valid Python expression. If argument N is not a Python int object, it must define an __index__() method that returns an integer. See also int(x, 2) to convert from binary, 0bNNN binary literals, and the b type code in str.format().

bool([x])

Converts a value to a Boolean, using the standard truth testing procedure. If x is false or omitted, this returns False; otherwise, it returns True. bool is also a class, which is a subclass of int. The class bool cannot be subclassed further. Its only instances are False and True.

bytearray([arg [, encoding [, errors]]])

Returns a new array of bytes. The bytearray type is a mutable sequence of small integers in the range 0...255, which prints as ASCII text when possible. It is essentially a mutable variant of bytes, which supports most operations of mutable sequences, as well as most methods of the str string type. arg may be a str string with encoding name (and optionally errors) as in str(); an integer size to initialize an array of NULL bytes; an iterable of small integers used to initialize the array such as a bytes string or another bytearray; an object conforming to the memory-view (previously known as buffer) interface used to initialize the array; or absent, to create a zero-length array.

bytes([arg [, encoding [, errors]]])

Returns a new bytes object, which is an immutable sequence of integers in the range 0...255. bytes is an immutable version of bytearray. It has the same nonmutating string methods and sequence operations. It is commonly used to represent 8-bit byte strings of binary data. Constructor arguments are interpreted as for bytearray(). bytes objects may also be created with the b'ccc' literal.

chr(I)

Returns a one-character string whose Unicode codepoint is integer I. This is the inverse of ord() (e.g., chr(97) is 'a' and ord('a') is 97).

classmethod(function)

Returns a class method for a function. A class method receives the class as an implicit first argument, just like an instance method receives the instance. Use the @classmethod function decorator in version 2.4 and later (see the section The def Statement).

compile(string, filename, kind [, flags[, dont_inherit]])

Compiles
string into a code object. string is a Python string containing Python program code. filename is a string used in error messages (and is usually the name of the file from which the code was read, or <string> if typed interactively). kind can be 'exec' if string contains statements; 'eval' if string is an expression; or 'single', which prints the output of an expression statement that evaluates to something other than None. The resulting code object can be executed with exec() or eval() built-in function calls. The optional last two arguments control which future statements affect the string’s compilation; if absent, the string is compiled with the future statements in effect at the place of the compile() call (see Python manuals for more details).

complex([real [, imag]])

Builds a complex number object (this can also be done using the J or j suffix: real+imagJ). imag defaults to 0. If both arguments are omitted, returns 0j.

delattr(object, name)

Deletes the attribute named name (a string) from object. It is similar to del obj.name, but name is a string, not a variable (e.g., delattr(a,'b') is like del a.b).

dict([mapping | iterable | keywords])

Returns a new dictionary initialized from a mapping; a sequence (or other iterable) of key/value pairs; or a set of keyword arguments. If no argument is given, it returns an empty dictionary. This is a subclassable type class name.

dir([object])

If no arguments, this returns the list of names in the current local scope (namespace). With any object with attributes as an argument, it returns the list of attribute names associated with that object. It works on modules, classes, and class instances, as well as built-in objects with attributes (lists, dictionaries, etc.). Its result includes inherited attributes, and is sorted. Use __dict__ attributes for simple attribute lists of a single object (and possibly __slots__ for some classes).

divmod(X, Y)

Returns a tuple of (X / Y, X % Y).

enumerate(iterable, start=0)

Returns an iterable enumerate object. iterable must be a sequence, an iterator, or some other object that supports iteration. The __next__() method of the iterator returned by enumerate() returns a tuple containing a count (from start, or zero by default) and the corresponding value obtained from iterating over iterable. This call is useful for obtaining an indexed series when both positions and items are required in for loops: (0, seq[0]), (1, seq[1]), (2, seq[2]).... Available in version 2.3 and later.

eval(expr [, globals [, locals]])

Evaluates expr, which is assumed to be either a Python string containing a Python expression or a compiled code object. expr is evaluated in the namespace scopes of the eval call itself, unless the globals and/or locals namespace dictionary arguments are passed. locals defaults to globals if only globals is passed. It returns an expr result. Also see the compile function discussed earlier in this section, and the exec() built-in for dynamically running statements.

exec(stmts [, globals [, locals]])

Evaluates stmts, which is assumed to be either a Python string containing Python statements or a compiled code object. If stmts is a string, the string is parsed as a suite of Python statements, which is then executed unless a syntax error occurs. If it is a code object, it is simply executed. globals and locals work the same as in eval(), and compile() may be used to precompile to code objects. This is available as a statement form in Python 2.X (see Specific Statements).

filter(function, iterable)

Returns those elements of iterable for which function returns true. function takes one parameter. If function is None, this returns all the true items.

In Python 2.6 this call returns a list. In Python 3.0, it returns an iterable object that generates values on demand and can be traversed only once (wrap in a list() call to force results generation if required).

float([X])

Converts a number or a string X to a floating-point number (or 0.0 if no argument is passed). This is a subclassable type class name.

format(value [, formatspec])

Converts an object value to a formatted representation, as controlled by string formatspec. The interpretation of formatspec depends on the type of the value argument (a standard formatting syntax is used by most built-in types, described for the string formatting method earlier in this book). format(value, formatspec) calls value.__format__(formatspec), and is a base operation of the str.format method (e.g., format(1.3333, '.2f') is equivalent to '{0:.2f}'.format(1.3333)).

frozenset([iterable])

Returns a frozen set object whose elements are taken from iterable. Frozen sets are immutable sets that have no update methods, and may be nested in other sets.

getattr(object, name [, default])

Returns the value of attribute name (a string) from object. It is similar to object.name, but name is a string, not a variable (e.g., getattr(a,'b') is like a.b). If the named attribute does not exist, default is returned if provided; otherwise, AttributeError is raised.

globals()

Returns a dictionary containing the caller’s global variables (e.g., the enclosing module’s names).

hasattr(object, name)

Returns true if object has an attribute called name (a string); false otherwise.

hash(object)

Returns the hash value of object (if it has one). Hash values are integers used to quickly compare dictionary keys during a dictionary lookup.

help([object])

Invokes the built-in help system. (This function is intended for interactive use.) If no argument is given, an interactive help session starts in the interpreter console. If the argument is a string, it is looked up as the name of a module, function, class, method, keyword, or documentation topic, and its help text is displayed. If the argument is any other kind of object, help for that object is generated.

hex(N)

Converts an integer number N to a hexadecimal (base 16) digits string. If argument N is not a Python int object, it must define an __index__() method that returns an integer.

id(object)

Returns the unique identity integer of object (i.e., its address in memory).

__import__(name [, globals [, locals [, fromlist [, level]]]])

Imports and returns a module, given its name as a string at runtime (e.g., mod = __import__("mymod")). This call is generally faster than constructing and executing an import statement string with exec(). This function is called by import and from statements internally and can be overridden to customize import operations. All arguments but the first have advanced roles (see the Python Library Reference). See also the imp standard library module for related tools.

input([prompt])

Prints a prompt
string if given, then reads a line from the stdin input stream (sys.stdin) and returns it as a string. It strips the trailing \n at the end of the line and raises EOFError at the end of the stdin stream. On platforms where GNU readline is supported, input() uses it. In Python 2.X, this function is named raw_input().

int([number | string [, base]])

Converts a number or string to a plain integer. Conversion of floating-point numbers to integers truncates toward 0. base can be passed only if the first argument is a string, and defaults to 10. If base is passed as 0, the base is determined by the string’s contents; otherwise, the value passed for base is used for the base of the conversion of the string. base may be 0, and 2...36. The string may be preceded by a sign and surrounded by whitespace. If no arguments, returns 0. This is a subclassable type class name.

isinstance(object, classinfo)

Returns true if object is an instance of classinfo, or an instance of any subclass thereof. classinfo can also be a tuple of classes and/or types. In Python 3.0, types are classes, so there is no special case for types. In Python 2.X, the second argument can also be a type object, making this function useful as an alternative type-testing tool (isinstance(X, Type) versus type(X) is Type).

issubclass(class1, class2)

Returns true if class1 is derived from class2. class2 can also be a tuple of classes.

iter(object [, sentinel])

Returns an iterator object that can be used to step through items in object. Iterator objects returned have a __next__() method that returns the next item or raises StopIteration to end the progression. All iteration contexts in Python use this protocol to advance, if supported by object. The next(I) built-in function also calls I.__next__() automatically. If one argument, object is assumed to provide its own iterator or be a sequence; if two arguments, object is a callable that is called until it returns sentinel. The iter() call can be overloaded in classes with __iter__.

In Python 2.X, iterable objects have a method named next() instead of __next__(). For forward compatibility, the next() built-in function is available in 2.6 and calls I.next() instead of I.__next__() (prior to 2.6, I.next() may be called manually instead).

len(object)

Returns the number of items (length) in a collection object, which may be a sequence or mapping.

list([iterable])

Returns a new list containing all the items in any iterable object. If iterable is already a list, it returns a copy of it. If no arguments, returns a new empty list. This is a subclassable type class name.

locals()

Returns a dictionary containing the local variables of the caller (with one key:value entry per local).

map(function, iterable [, iterable]*)

Applies function to each item of any sequence or other iterable iterable, and returns the individual results. For example, map(abs, (1, −2)) returns 1 and 2. If additional iterable arguments are passed, function must take that many arguments, and it is passed one item from each iterable on every call; iteration stops at the end of the shortest iterable.

In Python 2.6, this returns a list of the individual call results. In Python 3.0, it instead returns an iterable object that generates results on demand and can be traversed only once (wrap it in a list() call to force results generation if required). Also in Python 2.X (but not Python 3), if function is None, map collects all the items into a result list; if sequences differ in length, all are padded to the length of the longest, with Nones. Similar utility is available in Python 3.0 in module itertools.

max(iterable [, arg]* [, key])

With a single argument iterable, returns the largest item of a nonempty iterable (e.g., string, tuple, and list). With more than one argument, it returns the largest of all the arguments. The optional keyword-only key argument specifies a one-argument value transform function like that used for list.sort() and sorted().

memoryview(object)

Returns a memory view object created from the given argument. Memory views allow Python code to access the internal data of an object that supports the protocol without copying the object. Memory can be interpreted as simple bytes or more complex data structures. Built-in objects that support the memory-view protocol include bytes and bytearray. See Python manuals; memory views are largely a replacement for the Python 2.X buffer protocol and built-in function.

min(iterable [, arg]* [, key])

With a single argument iterable, returns the smallest item of a nonempty iterable (e.g., string, tuple, list). With more than one argument, it returns the smallest of all the arguments. The key argument is as in max().

next(iterator [, default])

Retrieves the next item from the iterator by calling its __next__() method. If the iterator is exhausted, default is returned if given; otherwise, StopIteration is raised.

This is available in Python 2.6 for forward compatibility, but it calls iterator.next() instead of iterator.__next__(). In Python 2.X prior to 2.6, this call is missing; use iterator.next() manually instead.

object()

Returns a new featureless object. object is a base for all new style classes, which includes classes explicitly derived from object in Python 2.X, and all classes in Python 3.0.

oct(N)

Converts a number N to an octal (base 8) digits string. If argument N is not a Python int object, it must define a __index__() method that returns an integer.

open(…)
open(file [, mode='r'
 [, buffering=None
 [, encoding=None # text mode only
 [, errors=None # text mode only
 [, newline=None # text mode only
 [, closefd=True]]]]]]) # descriptors only

Returns a new file object connected to the external file named by file, or raises IOError if the open fails. file is usually a string or bytes object giving the name (and the path if the file isn’t in the current working directory) of the file to be opened. file may also be an integer file descriptor of the file to be wrapped. If a file descriptor is given, it is closed when the returned I/O object is closed, unless closefd is set to False. All options may be passed as keyword arguments.

mode is an optional string that specifies the mode in which the file is opened. It defaults to 'r', which means open for reading in text mode. Other common values are 'w' for writing (truncating the file if it already exists), and 'a' for appending. In text mode, if encoding is not specified, the encoding used is platform dependent, and newlines are translated to and from '\n' by default. For reading and writing raw bytes, use binary modes 'rb', 'wb', or 'ab', and leave encoding unspecified.

Available modes that may be combined: 'r' for read (default); 'w' for write, truncating the file first; 'a' for write, appending to the end of the file if it exists; 'b' for binary mode; 't' for text mode (default); '+' to open a disk file for updating (reading and writing); 'U' for universal newline mode (for backward compatibility, not needed for new code). The default 'r' mode is the same as 'rt' (open for reading text). For binary random access, the mode 'w+b' opens and truncates the file to 0 bytes, while 'r+b' opens the file without truncation.

Python distinguishes between files opened in binary and text modes, even when the underlying operating system does not.[5]

	For input, files opened in binary mode (by appending 'b' to mode) return contents as bytes objects without any Unicode decoding or line-end translations. In text mode (the default, or when 't' is appended to mode), the contents of the file are returned as str strings after the bytes are decoded using either an explicitly passed encoding name or a platform-dependent default, and line-ends are translated per newline.

	For output, binary mode expects a bytes or bytearray and writes it unchanged. Text mode expects a str, and encodes it per encoding and applies line-end translations per newline before writing.

buffering
is an optional integer used to set buffering policy. By default, full buffering is on. Pass 0 to switch buffering off (allowed in binary mode only); 1 to set line buffering; and an integer > 1 for full buffering. Buffered data transfers might not be immediately fulfilled (use file.flush to force).

encoding
is the name of the encoding used to decode or encode a text file’s content on transfers. This should be used in text mode only. The default encoding is platform dependent, but any encoding supported by Python can be passed. See the codecs module for the list of supported encodings.

errors
is an optional string that specifies how encoding errors are to be handled. This should be used in text mode only. Pass 'strict' to raise a ValueError exception if there is an encoding error (the default of None has the same effect), or pass 'ignore' to ignore errors. Ignoring encoding errors can lead to data loss. See codecs.register() for a list of the permitted values.

newline
controls how universal newlines work, and applies to text mode only. It can be None (the default), '', '\n', '\r', and '\r\n'.

	On input, if newline is None, universal newlines mode is enabled: lines may end in '\n', '\r', or '\r\n', and all these are translated to '\n' before being returned to the caller. If newline is '', universal newline mode is enabled, but line endings are returned to the caller untranslated. If it has any of the other legal values, input lines are only terminated by the given string, and the line ending is returned to the caller untranslated.

	On output, if newline is None, any '\n' characters written are translated to the system default line separator, os.linesep. If newline is '', no translation takes place. If it is any of the other legal values, any '\n' characters written are translated to the given string.

If closefd is False, the underlying file descriptor will be kept open when the file is closed. This does not work when a file name is given as a string and must be True (the default) in that case.

ord(C)

Returns an integer codepoint value of a one-character string C. For ASCII characters, this is the 7-bit ASCII code of C; for wider Unicode, this is the Unicode code point of a one-character Unicode string.

pow(X, Y [, Z])

Returns X to power Y [modulo Z]. It is similar to the ** expression operator.

print([object,...][, sep=' '] [, end='n'] [, file=sys.stdout])

Prints object(s) to the stream file, separated by sep and followed by end. sep, end, and file, if present, must be given as keyword arguments, and default as shown.

All nonkeyword arguments are converted to strings, like str() does, and written to the stream. Both sep and end must either be strings, or None (meaning use their default values). If no object is given, end is written. file must be an object with a write(string) method, but need not be an actual file; if it is not passed or is None, sys.stdout will be used. Print functionality is available as a statement form in Python 2.X (see Specific Statements).

property([fget[, fset[, fdel[, doc]]]])

Returns a property attribute for new-style classes (classes that derive from object). fget is a function for getting an attribute value, fset is a function for setting, and fdel is a function for deleting. This call may be used as a function decorator itself, and returns an object with methods getter, setter, and deleter, which may also be used as decorators in this role (see The def Statement).

range([start,] stop [, step])

Returns successive integers between start and stop. With one argument, it returns integers from zero through stop-1. With two arguments, it returns integers from start through stop-1. With three arguments, it returns integers from start through stop-1, adding step to each predecessor in the result. start, step default to 0, 1. range(0, 20, 2) is a list of even integers from 0 through 18. This call is often used to generate offset lists or repeat counts in for loops.

In Python 2.6 this call returns a list. In Python 3.0, it returns an iterable object that generates values on demand and can be traversed multiple times (wrap in a list() call to force results generation if required).

repr(object)

Returns a string containing a printable and potentially parseable as-code representation of any object. In Python 2.X (but not Python 3.0) this is equivalent to `object` (back quotes expression).

reversed(seq)

Returns a reverse iterator. seq must be an object that has a __reversed__() method or supports the sequence protocol (the __len__() method and the __getitem__() method with integer arguments starting at 0).

round(X [, N])

Returns the floating-point value X rounded to N digits after the decimal point. N defaults to zero, and may be negative to denote digits to the left of the decimal point. The return value is an integer if called with one argument, otherwise of the same type as X. In Python 2.X only, the result is always a floating-point. In Python 3.0 only, calls X.__round__().

set([iterable])

Returns a set whose elements are taken from iterable. The elements must be immutable. To represent sets of sets, the nested sets should be frozenset objects. If iterable is not specified, this returns a new empty set. Available since version 2.4. See also the section Sets, and the {...} set literal in Python 3.0.

setattr(object, name, value)

Assigns value to the attribute name (a string) in object. Like object.name = value, but name is a runtime string, not a variable name taken literally (e.g., setattr(a,'b',c) is equivalent to a.b=c).

slice([start ,] stop [, step])

Returns a slice object representing a range, with read-only attributes start, stop, and step, any of which can be None. Arguments are the same as for range. Slice objects may be used in place of i:j:k slice notation (e.g., X[i:j] is equivalent to X[slice(i, j)]).

sorted(iterable, key=None, reverse=False)

Returns a new sorted list from the items in iterable. The optional keyword arguments key and reverse have the same meaning as those for the list.sort() method described earlier; key is a one-argument value transform function. This works on any iterable and returns a new object instead of changing a list in-place, and is thus useful in for loops to avoid splitting sort calls out to separate statements due to None returns. Available in version 2.4 and later.

In Python 2.X, this has call signature sorted(iterable, cmp=None, key=None, reverse=False), where optional arguments cmp, key, and reverse have the same meaning as those for the Python 2.X list.sort() method described earlier in this book.

staticmethod(function)

Returns a static method for function. A static method does not receive an implicit first argument, and so is useful for processing class attributes that span instances. Use the @staticmethod function decorator in version 2.4 and later (see the section The def Statement).

str([object [, encoding [, errors]]])

Returns a “user-friendly” and printable string version of an object. This is also a subclassable type name. Operates in one of the following modes:

	When only object is given, this returns its nicely printable representation. For strings, this is the string itself. The difference with repr(object) is that str(object) does not always attempt to return a string that is acceptable to eval(); its goal is to return a printable string. With no arguments, this returns the empty string.

	If encoding and/or errors are passed, this will decode the object, which can either be a byte string or a character buffer, using the codec for encoding. The encoding parameter is a string giving the name of an encoding; if the encoding is not known, LookupError is raised. Error handling is done according to errors; if errors is 'strict' (the default), a ValueError is raised for encoding errors, while a value of 'ignore' causes errors to be silently ignored, and a value of 'replace' causes the official Unicode replacement character, U+FFFD, to be used to replace input characters that cannot be decoded. See also the codecs module, and the similar bytes.decode() method (b'a\xe4'.decode('latin-1') is equivalent to str(b'a\xe4', 'latin-1')).

In Python 2.X, this call has simpler signature str([object]), and returns a string containing the printable representation of object (the first usage mode in Python 3.0).

sum(iterable [, start])

Sums start and the items of an iterable, from left to right, and returns the total. start defaults to 0. The iterable’s items are normally numbers and are not allowed to be strings (to concatenate an iterable of strings, use ''.join(iterable)).

super([type [, object-or-type]])

Returns the superclass of type. If the second argument is omitted, the super object returned is unbound. If the second argument is an object, isinstance(obj, type) must be true. If the second argument is a type, issubclass(type2, type) must be true. Calling super() without arguments is equivalent to super(this_class, first_arg). In a single-inheritance class hierarchy, this call can be used to refer to parent classes without naming them explicitly. This call can also be used to implement cooperative multiple inheritance in a dynamic execution environment.

This works only for new-style classes in Python 2.X (where type is not optional), and for all classes in Python 3.0.

tuple([iterable])

Returns a new tuple with the same elements as any iterable passed in. If iterable is already a tuple, it is returned directly (not a copy). If no argument, returns a new empty tuple. This is also a subclassable type class name.

type(object | (name, bases, dict))

This call is used in two different modes, determined by call pattern:

	With one argument, returns a type object representing the type of object. Useful for type-testing in if statements (e.g., type(X)==type([])), as well as dictionary keys. See also module types for preset type objects that are not built-in names, and isinstance() earlier in this section. Due to the recent merging of types and classes, type(object) is generally the same as object.__class__. In Python 2.X, the types module also includes built-in types.

	With three arguments, serves as a constructor, returning a new type object. This is a dynamic form of the class statement. The name string is the class name and becomes the __name__ attribute; the bases tuple itemizes the base classes and becomes the __bases__ attribute; and the dict dictionary is the namespace containing definitions for class body and becomes the __dict__ attribute. class X(object): a = 1 is equivalent to X = type('X', (object,), dict(a=1)). This mapping is commonly used for metaclass construction.

vars([object])

Without arguments, returns a dictionary containing the current local scope’s names. With a module, class, or class instance object as an argument, it returns a dictionary corresponding to object’s attribute namespace (i.e., its __dict__). The result should not be modified. Useful for % string formatting.

zip([iterable [, iterable]*])

Returns a series of tuples, where each ith tuple contains the ith element from each of the argument iterables. For example, zip('ab', 'cd') returns ('a', 'c') and ('b', 'd')]. At least one iterable is required, or a TypeError is raised. The result series is truncated to the length of the shortest argument iterable. With a single iterable argument, it returns a series of one-tuples. May also be used to unzip zipped tuples: X, Y = zip(*zip(T1, T2)).

In Python 2.6, this returns a list. In Python 3.0, it returns an iterable object that generates values on demand and can be traversed only once (wrap in a list() call to force results generation if required). In Python 2.X (but not Python 3), when there are multiple argument iterables of the same length, zip is similar to map with a first argument of None.

Python 2.X Built-in Functions

The prior section’s list applies to Python 3. Semantic differences between built-ins available in both Python 3.0 and 2.X are noted in the prior section.

Python 3.0 built-ins not supported by Python 2.6

Python 2.X does not have the following Python 3.0 built-in functions:

	ascii() (this works like Python 2’s repr())

	exec() (this is a statement form in Python 2.X with similar semantics)

	memoryview()

	print() (present in Python 2’s __builtin__ module, but not directly usable syntactically, as printing is a statement form and reserved word in Python 2.X)

Python 2.6 built-ins not supported by Python 3.0

Python 2.X has the following additional built-in functions, some of which are available in different forms in Python 3.0:

apply(func, pargs [, kargs])

Calls any callable object func (a function, method, class, etc.), passing the positional arguments in tuple pargs, and the keyword arguments in dictionary kargs. It returns the func call result.

In Python 3.0, this is removed. Use the argument-unpacking call syntax instead: func(*pargs, **kargs). This form is also preferred in Python 2.6 as it is more general and symmetric with function definitions.

basestring()

The baseclass for normal and Unicode strings (useful for isinstance tests).

In Python 3.0, the single str type represents all text (wide Unicode and other).

buffer(object [, offset [, size]])

Returns a new buffer object for a conforming object (see the Python Library Reference).

This call is removed in Python 3.0. The new memoryview() built-in provides similar functionality.

callable(object)

Returns 1 if object
is callable; otherwise, returns 0.

This call is removed in Python 3.0. Use hasattr(f, '__call__') instead.

cmp(X, Y)

Returns a negative integer, zero, or a positive integer to designate X < Y, X == Y, or X > Y, respectively.

In Python 3.0, this is removed, but may be simulated as: (X > Y) - (X < Y). However, most common cmp() use cases (comparison functions in sorts, and the __cmp__ method of classes) have also been removed in Python 3.0.

coerce(X, Y)

Returns a tuple containing the two numeric arguments X and Y converted to a common type.

This call is removed in Python 3.0 (its main use case was for Python 2.X classic classes).

execfile(filename [, globals [, locals]])

Like eval, but runs all the code in a file whose string name is passed in as filename (instead of an expression). Unlike imports, this does not create a new module object for the file. It returns None. Namespaces for code in filename are as for eval.

In Python 3.0, this may be simulated as: exec(open(filename).read()).

file(filename [, mode[, bufsize]])

An alias for the open() built-in function, and the subclassable class name of the built-in file type.

In Python 3.0, the name file is removed: use open() to create file objects, and io module classes to customize file operation.

input([prompt]) (original form)

Prints prompt, if given. Then it reads an input line from the stdin stream (sys.stdin), evaluates it as Python code, and returns the result. It is like eval(raw_input(prompt)).

In Python 3.0, because raw_input() was renamed input(), the original Python 2.X input() is no longer available, but may be simulated as: eval(input{prompt)).

intern(string)

Enters string in the table of “interned strings” and returns the interned string. Interned strings are “immortals” and serve as a performance optimization (they can be compared by fast is identity, rather than == equality).

In Python 3.0, this call has been moved to sys.intern(). Import module sys to use it.

long(X [, base])

Converts a number or a string X to a long integer. base can be passed only if X is a string. If 0, the base is determined by the string contents; otherwise, it is used for the base of the conversion. It is a subclassable type class name.

In Python 3.0, the int integer type supports arbitrarily long precision, and so subsumes Python 2’s long type. Use int() in Python 3.0.

raw_input([prompt])

This is the Python 2.X name of the Python 3.0 input() function described in the prior section.

In Python 3.0, use the input() built-in.

reduce(func, iterable [, init])

Applies the two-argument function func to successive items from iterable, so as to reduce the collection to a single value. If init is given, it is prepended to iterable.

In Python 3.0, this built-in is still available, as functools.reduce(). Import module functools to use it.

reload(module)

Reloads, re-parses, and re-executes an already imported module in the module’s current namespace. Re-execution replaces prior values of the module’s attributes in-place. module must reference an existing module object; it is not a new name or a string. This is useful in interactive mode if you want to reload a module after fixing it, without restarting Python. It returns the module object.

In Python 3.0, this built-in is still available as imp.reload(). Import module imp to use it.

unichr(i)

Returns the Unicode string of one character whose Unicode code is the integer i (e.g., unichr(97) returns the string u'a'). This is the inverse of ord for Unicode strings, and the Unicode version of chr(). The argument must be in range 0...65535 inclusive, or ValueError is raised.

In Python 3.0, normal strings represent Unicode characters: use the chr() call instead (e.g., ord('\xe4') is 228, and chr(228) and chr(0xe4) both return 'ä').

unicode(string [, encoding [, errors]])

Decodes string using the codec for encoding. Error handling is done according to errors. The default behavior is to decode UTF-8 in strict mode, meaning that encoding errors raise ValueError. See also the codecs module in the Python Library Reference.

In Python 3.0, there is no separate type for Unicode—the str type represents all text (wide Unicode and other), and the bytes type represents 8-bit byte binary data. Use normal str strings for Unicode text; bytes.decode() or str() to decode from raw bytes to Unicode according to an encoding; and normal file objects to process Unicode text files.

xrange([start,] stop [, step])

Like range, but doesn’t actually store the entire list all at once (rather, it generates one integer at a time). This is useful in for loops when there is a big range and little memory. It optimizes space, but generally has no speed benefit.

In Python 3.0, the original range() function is changed to return an iterable instead of producing a result list in memory, and thus subsumes Python 2’s xrange(). Use range() in Python 3.0.

In addition, the file open call has changed radically enough in Python 3.0 that individual mention of Python 2’s variant is warranted (in Python 2.X, codecs.open has many of the features in Python 3’s open):

open(filename [, mode, [bufsize]])

Returns a new file object connected to the external file named filename (a string), or raises IOError if the open fails. The file name is mapped to the current working directory, unless it includes a directory path prefix. The first two arguments are generally the same as those for C’s fopen function, and the file is managed by the stdio system. With open(), file data is always represented as a normal str string in your script, containing bytes from the file (codecs.open() interprets file content as encoded Unicode text, represented as unicode objects).

mode defaults to 'r' if omitted, but can be 'r' for input; 'w' for output (truncating the file first); 'a' for append; and 'rb', 'wb', or 'ab' for binary files (to suppress line-end conversions to and from \n). On most systems, most of these can also have a + appended to open in input/output updates mode (e.g., 'r+' to read/write, and 'w+' to read/write but initialize the file to empty).

bufsize defaults to an implementation-dependent value, but can be 0 for unbuffered, 1 for line-buffered, negative for system-default, or a given specific size. Buffered data transfers might not be immediately fulfilled (use file flush methods to force).

[5] In fact, because file mode implies both configuration options and string data types, it’s probably best to think of open() in terms of two distinct flavors—text and binary, as specified in the mode string. Python developers chose to overload a single function to support the two file types, with mode-specific arguments and differing content types, rather than provide two separate open functions and file object types.

Built-in Exceptions

This section describes the exceptions that Python might raise during a program’s execution. Beginning with Python 1.5, all built-in exceptions are class objects (prior to 1.5 they were strings). Built-in exceptions are provided in the built-in scope namespace. Many built-in exceptions have associated state information that provides exception details.

Superclasses (Categories)

The following exceptions are used only as superclasses for other exceptions.

BaseException

The root superclass for all built-in exceptions. It is not meant to be directly inherited by user-defined classes; use Exception for this role instead. If str() is called on an instance of this class, the representation of the constructor argument(s) passed when creating the instance are returned (or the empty string if there were no such arguments). These instance constructor arguments are stored and made available in the instance’s args attribute as a tuple. Subclasses inherit this protocol.

Exception

The root superclass for all built-in and non-system-exiting exceptions. This is a direct subclass of BaseException.

User-defined exceptions should inherit (be derived) from this class. This derivation is required for user-defined exceptions in Python 3.0; Python 2.6 requires this of new-style classes, but also allows standalone exception classes.

try statements that catch this exception will catch all but system exit events, because this class is superclass to all exceptions but SystemExit, KeyboardInterrupt, and GeneratorExit (these three derive directly from BaseException instead).

ArithmeticError

Arithmetic error exceptions category: the superclass of OverflowError, ZeroDivisionError, and FloatingPointError, and a subclass of Exception.

LookupError

Sequence and mapping index errors: the superclass for IndexError and KeyError, and a subclass of Exception.

EnvironmentError

The category for exceptions that occur outside Python: the superclass for IOError and OSError, and a subclass of Exception. The raised instance includes informational attributes errno and strerror (and possible filename for exceptions involving file paths), which are also in args.

Specific Exceptions Raised

The following classes are exceptions that are actually raised. In addition, NameError, RuntimeError, SyntaxError, ValueError, and Warning are specific exceptions and superclasses to other built-in exceptions.

AssertionError

Raised when an assert statement’s test is false.

AttributeError

Raised on attribute reference or assignment failure.

EOFError

Raised when the immediate end-of-file is hit by input() (or raw_input() in Python 2). File read methods return an empty object at end of file instead.

FloatingPointError

Raised on floating-point operation failure.

GeneratorExit

Raised when a generator’s close() method is called. This directly inherits from BaseException instead of Exception since it is not an error.

IOError

Raised on I/O or file-related operation failures. Derived from EnvironmentError with state information described above.

ImportError

Raised when an import or from fails to find a module or attribute.

IndentationError

Raised when improper indentation is found in source code. Derived from SyntaxError.

IndexError

Raised on out-of-range sequence offsets (fetch or assign). Slice indexes are silently adjusted to fall in the allowed range; if an index is not an integer, TypeError is raised.

KeyError

Raised on references to nonexistent mapping keys (fetch). Assignment to a nonexistent key creates that key.

KeyboardInterrupt

Raised on user entry of the interrupt key (normally Ctrl-C or Delete). During execution, a check for interrupts is made regularly. This exception inherits directly from BaseException to prevent it from being accidentally caught by code that catches Exception and thus prevents interpreter exit.

MemoryError

Raised on recoverable memory exhaustion. This causes a stack-trace to be displayed if a runaway program was its cause.

NameError

Raised on failures to find a local or global unqualified name.

NotImplementedError

Raised on failures to define expected protocols. Abstract class methods may raise this when they require a method to be redefined. Derived from RuntimeError. (This is not to be confused with NotImplemented, a special built-in object returned by some operator-overloading methods when operand types are not supported.)

OSError

Raised on os module errors (its os.error exception). Derived from EnvironmentError with state information described earlier.

OverflowError

Raised on excessively large arithmetic operations. This cannot occur for integers as they support arbitrary precision, and most floating-point operations are not checked either.

ReferenceError

Raised in conjunction with weak references. See the weakref module.

RuntimeError

A rarely used catch-all exception.

StopIteration

Raised on the end of values progression in iterator objects. Raised by the next(X) built-in and X.__next__() methods (X.next() in Python 2).

SyntaxError

Raised when parsers encounter a syntax error. This may occur during import operations, calls to eval() and exec(), and when reading code in a top-level script file or standard input. Instances of this class have attributes filename, lineno, offset, and text for access to details; str() of the exception instance returns only the message.

SystemError

Raised on interpreter internal errors that are not serious enough to shut down (these should be reported).

SystemExit

Raised on a call to sys.exit(N). If not handled, the Python interpreter exits, and no stack traceback is printed. If the passed value is an integer, it specifies the system exit status (passed on to C’s exit function); if it is None, the exit status is zero; if it has another type, the object’s value is printed and the exit status is one. Derived directly from BaseException to prevent it from being accidentally caught by code that catches Exception and thus prevents interpreter exit.

sys.exit() raises this exception so that clean-up handlers (finally clauses of try statements) are executed, and so that a debugger can execute a script without losing control. The os._exit() function exits immediately when needed (e.g., in the child process after a call to fork()). Also see the atexit standard library module for exit function specification.

TabError

Raised when an improper mixture of spaces and tabs is found in source code. Derived from IndentationError.

TypeError

Raised when an operation or function is applied to an object of inappropriate type.

UnboundLocalError

Raised on references to local names that have not yet been assigned a value. Derived from NameError.

UnicodeError

Raised on Unicode-related encoding or decoding errors; a superclass category, and a subclass of ValueError.

UnicodeEncodeError
UnicodeDecodeError
UnicodeTranslateError

Raised on Unicode-related processing errors; subclasses of UnicodeError.

ValueError

Raised when a built-in operation or function receives an argument that has the correct type but an inappropriate value, and the situation is not described by a more specific exception like IndexError.

WindowsError

Raised on Windows-specific errors; a subclass of OSError.

ZeroDivisionError

Raised on division or modulus operations with 0 on the right.

Warning Category Exceptions

The following exceptions are used as warning categories:

Warning

The superclass for all of the following warning categories; it is a direct subclass of Exception.

UserWarning

Warnings generated by user code.

DeprecationWarning

Warnings about deprecated features.

PendingDeprecationWarning

Warnings about features that will be deprecated in the future.

SyntaxWarning

Warnings about dubious syntax.

RuntimeWarning

Warnings about dubious runtime behavior.

FutureWarning

Warnings about constructs that will change semantically in the future.

ImportWarning

Warnings about probable mistakes in module imports.

UnicodeWarning

Warnings related to Unicode.

BytesWarning

Warnings related to bytes and buffer (memory-view) objects.

Warnings Framework

Warnings are issued when future language changes might break existing code in a future Python release—and in other contexts. Warnings may be configured to print messages, raise exceptions, or be ignored. The warnings framework can be used to issue warnings by calling the warnings.warn function:
warnings.warn("feature obsolete", DeprecationWarning)

In addition, you can add filters to disable certain warnings. You can apply a regular expression pattern to a message or module name to suppress warnings with varying degrees of generality. For example, you can suppress a warning about the use of the deprecated regex module by calling:
import warnings
warnings.filterwarnings(action = 'ignore',
 message='.*regex module*',
 category=DeprecationWarning,
 module = '__main__')

This adds a filter that affects only warnings of the class DeprecationWarning triggered in the __main__ module, applies a regular expression to match only the message that names the regex module being deprecated, and causes such warnings to be ignored. Warnings can also be printed only once, printed every time the offending code is executed, or turned into exceptions that will cause the program to stop (unless the exceptions are caught). See the warnings module documentation in version 2.1 and later for more information. See also the -W argument in the section Command-Line Options.

Python 2.X Built-in Exceptions

The set of available exceptions, as well as the shape of the exception class hierarchy, varies slightly in Python 2.6 from the 3.0 description of the prior section. For example, in Python 2.X:

	Exception
is the topmost root class (not BaseException, which is absent in Python 2).

	StandardError
is an additional Exception subclass, and is a root class above all built-in exceptions except SystemExit.

See Python 2.6 manuals for full details.

Built-in Attributes

Some objects export special attributes that are predefined by Python. The following is a partial list because many types have unique attributes all their own; see the entries for specific types in the Python Library Reference.[6]

X.__dict__

Dictionary used to store object X’s writable attributes.

I.__class__

Class object from which instance I was generated. In version 2.2 and later, this also applies to object types; most objects have a __class__ attribute (e.g., [].__class__ == list == type([])).

C.__bases__

Tuple of class C’s base classes, as listed in C’s class statement header.

X.__name__

Object X’s name as a string; for classes, the name in the statement header; for modules, the name as used in imports, or "__main__" for the module at the top level of a program (e.g., the main file run to launch a program).

[6] As of Python 2.1, you can also attach arbitrary user-defined attributes to function objects, simply by assigning them values. Python 2.X also supports special attributes I.__methods__ and I.__members__: lists of method and data member names for instances of some built-in types. These are removed in Python 3; use the built-in dir() function.

Standard Library Modules

Standard library modules are always available but must be imported to be used in client modules. To access them, use one of these formats:

	import module, and fetch attribute names (module.name)

	from module import name, and use module names unqualified (name)

	from module import *, and use module names unqualified (name)

For instance, to use name argv in the sys module, either use import sys and name sys.argv, or use from sys import argv and name argv.

There are many standard library modules; the following sections are not necessarily exhaustive, and aim to document only commonly used names in commonly used modules. See Python’s Library Reference for a more complete reference to standard library modules.

In all of the following module sections:

	Listed export names followed by parentheses are functions that must be called; others are simple attributes (i.e., variable names in modules).

	Module contents document the modules’ state Python 3.0; see Python manuals for information on attributes unique to version 2 or 3.

The sys Module

The sys
module contains interpreter-related exports. It also provides access to some environment components, such as the command line, standard streams, and so on.

argv

Command-line argument strings list: [command,
arguments...]. Like C’s argv array.

byteorder

Indicates the native byte-order (e.g., big for big-endian).

builtin_module_names

Tuple of string names of C modules compiled into this Python interpreter.

copyright

String containing the Python interpreter copyright.

dllhandle

Python DLL integer handle; Windows only (see the Python Library Reference).

displayhook(value)

Called by Python to display result values in interactive sessions; assign sys.displayhook to a one-argument function to customize output.

excepthook(type, value, traceback)

Called by Python to display uncaught exception details to stderr; assign sys.excepthook to a three-argument function to customize exception displays.

exc_info()

Returns tuple of three values describing the exception currently being handled (type, value, traceback), where type is the exception class, value is the instance of the exception class raised, and traceback is an object that gives access to the runtime call stack as it existed when the exception occurred. Specific to current thread. Subsumes exc_type, exc_value, and exc_traceback in Python 1.5 and later (all three of which are removed completely in Python 3.0). See the traceback module in the Python Library Reference for processing traceback objects, and The try Statement for more on exceptions.

exec_prefix

Assign to a string giving the site-specific directory prefix where the platform-dependent Python files are installed; defaults to /usr/local or a build-time argument. Use this to locate shared library modules (in <exec_prefix>/lib/python<version>/lib-dynload) and configuration files.

executable

String giving the full file pathname of the Python interpreter program running the caller.

exit([N])

Exits from a Python process with status N (default 0) by raising a SystemExit built-in exception (can be caught in a try statement and ignored). See also SystemExit (in Built-in Exceptions) and the os._exit() function (in The os System Module), which exits immediately without exception processing (useful in child processes after an os.fork()). Also see the atexit module for exit function specification.

getcheckinterval()

Returns the interpreter’s “check interval”; see setcheckinterval, later in this list.

getdefaultencoding()

Returns the name of the current default string encoding used by the Unicode implementation.

getfilesystemencoding()

Returns the name of the encoding used to convert Unicode filenames into system file names, or None if the system default encoding is used.

getrefcount(object)

Returns object’s current reference count value (+1 for the call’s argument).

getrecursionlimit()

Returns the maximum depth limit of the Python call stack; see also setrecursionlimit, later in this list.

getsizeof(object [, default])

Returns the size of an object in bytes. The object can be any type of object. All built-in objects return correct results, but third-party extension results are implementation specific. default provides a value that will be returned if the object type does not implement the size retrieval interface.

_getframe([depth])

Returns a frame object from the Python call stack (see the Python Library Reference).

hexversion

Python version number, encoded as a single integer (viewed best with the hex() built-in function). Increases with each new release.

intern(string)

Enters
string in the table of “interned” strings and returns the interned string—the string itself or a copy. Interning strings provides a small performance improvement for dictionary lookup: if both the keys in a dictionary and the lookup key are interned, key comparisons (after hashing) can be done by comparing pointers instead of strings. Normally, names used in Python programs are automatically interned, and the dictionaries used to hold module, class, and instance attributes have interned keys.

last_type
last_value
last_traceback

Type, value, and traceback objects of last uncaught exception (mostly for postmortem debugging).

maxsize

An integer giving the maximum value a variable of type Py_ssize_t can take. It’s usually 2**31 − 1 on a 32-bit platform and 2**63 − 1 on a 64-bit platform.

maxunicode

An integer giving the largest supported code point for a Unicode character. The value of this depends on the configuration option that specifies whether Unicode characters are stored as UCS-2 or UCS-4.

modules

Dictionary of modules that are already loaded; there is one name:object entry per module. Writable (for example, del sys.modules['name'] forces a module to be reloaded on next import).

path

List of strings specifying module import search path. Initialized from PYTHONPATH shell variable, .pth path files, and any installation-dependent defaults. Writable (e.g., sys.path.append('C:\\dir') adds a directory to the search path within a script).

The first item, path[0], is the directory containing the script that was used to invoke the Python interpreter. If the script directory is not available (e.g., if the interpreter is invoked interactively or if the script is read from standard input), path[0] is the empty string, which directs Python to search modules in the current working directory first. The script directory is inserted before the entries inserted from PYTHONPATH.

platform

String identifying the system on which Python is running: e.g., 'sunos5', 'darwin', 'linux2', 'win32', 'cygwin', 'PalmOS3'. Useful for tests in platform-dependent code. Hint:
'win32' means all current flavors of Windows, or test as sys.platform[:3]=='win' or sys.platform.startswith('win').

prefix

Assign to a string giving the site-specific directory prefix, where platform-independent Python files are installed; defaults to /usr/local or a build-time argument. Python library modules are installed in the directory <prefix>/lib/python<version>; platform-independent header files are stored in <prefix>/include/python<version>.

ps1

String specifying primary prompt in interactive mode; defaults to >>> unless assigned.

ps2

String specifying secondary prompt for compound statement continuations, in interactive mode; defaults to ... unless assigned.

dont_write_bytecode

If this is true, Python won’t try to write “.pyc” or “.pyo” files on the import of source modules (see also “-B” command-line option).

setcheckinterval(reps)

Call to set how often the interpreter checks for periodic tasks (e.g., thread switches, signal handlers) to reps. Measured in virtual machine instructions (default is 100). In general, a Python statement translates to multiple virtual machine instructions. Lower values maximize thread responsiveness but also maximize thread switch overhead.

setdefaultencoding(name)

Call to set the current default string encoding used by the Unicode implementation. Intended for use by the site module and is available during start-up only.

setprofile(func)

Call to set the system profile function to func: the profiler’s “hook” (not run for each line). See the Python Library Reference for details.

setrecursionlimit(depth)

Call to set maximum depth of the Python call stack to depth. This limit prevents infinite recursion from causing an overflow of the C stack and crashing Python. The default is 1,000 on Windows, but this may vary.

settrace(func)

Call to set the system trace function to func: the program location or state change callback “hook” used by debuggers, etc. See the Python Library Reference for details.

stdin

Standard input stream: a preopened file object. Can be assigned to any object with read methods to reset input within a script (e.g., sys.stdin=MyObj()). Used for interpreter input, including the input() built-in function (and raw_input() in Python 2).

stdout

Standard output stream: a preopened file object. Can be assigned to any object with write methods to reset output within a script (e.g., sys.stdout=open('log', 'a')). Used for some prompts and the print() built-in function (and print statement in Python 2).

stderr

Standard error stream: a preopened file object. Can be assigned to any object with write methods to reset stderr within a script (e.g., sys.stderr=wrappedsocket). Used for interpreter prompts/errors.

__stdin__
__stdout__
__stderr__

Original values of stdin, stderr, and stdout at program start (e.g., for restores as a last resort; normally, when assigning to sys.stdout, etc., save the old value and restore it in a finally clause). Can be None for GUI apps on Windows with no console.

tracebacklimit

Maximum number of traceback levels to print on uncaught exceptions; defaults to 1,000 unless assigned.

version

String containing the version number of the Python interpreter.

version_info

Tuple containing five version identification components: major, minor, micro, release level, and serial. For Python 3.0.1, this is (3, 0, 1, 'final', 0) (see the Python Library Reference).

winver

Version number used to form registry keys on Windows platforms (available only on Windows; see the Python Library Reference).

The string Module

The string
module defines constants and variables for processing string objects. See also the section Strings for a discussion of the string template substitution and formatting tools Template and Formatter defined in this module.

Module Functions and Classes

As of Python 2.0, most functions in this module are also available as methods of string objects, and method-based calls are preferred and are more efficient. See the section Strings for more details and a list of all available string methods not repeated here. Only items unique to the string module are listed in this section.

capwords(s)

Split the argument into words using split, capitalize each word using capitalize, and join the capitalized words using join. Replaces runs of whitespace characters by a single space, and removes leading and trailing whitespace.

maketrans(from, to)

Returns a translation table suitable for passing to bytes.translate, that will map each character in from into the character at the same position in to; from and to must have the same length.

Formatter

Class that allows creation of custom formatters using the same mechanism as the str.format() method described in section Strings.

Template

String template substitution class (see the section Strings).

Constants

ascii_letters

The string ascii_lowercase + ascii_uppercase.

ascii_lowercase

The string 'abcdefghijklmnopqrstuvwxyz'; not locale-dependent and will not change.

ascii_uppercase

The string 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'; not locale-dependent and will not change.

digits

The string '0123456789'.

hexdigits

The string '0123456789abcdefABCDEF'.

octdigits

The string '01234567'.

printable

Combination of digits, ascii_letters, punctuation, and whitespace.

punctuation

String of characters that are considered punctuation characters in the locale.

whitespace

String containing space, tab, linefeed, return, formfeed, and vertical tab: ' \t\n\r\v\f'.

The os System Module

The os
module is the primary operating system (OS) services interface. It provides generic OS support and a standard, platform-independent OS interface. The os module includes tools for environments, processes, files, shell commands, and much more. It also includes a nested submodule, os.path, which provides a portable interface to directory processing tools.

Scripts that use os and os.path for systems programming are generally portable across most Python platforms. However, some os exports are not available on all platforms (e.g., fork is available on Unix and Cygwin, but not in the standard Windows version of Python). Because the portability of such calls can change over time, consult the Python Library Reference for platform details.

See also related system modules: glob (filename expansion); tempfile (temporary files); signal (signal handling); socket (networking and IPC); threading (multithreading); queue (thread communication); subprocess (spawned command control); multiprocessing (threading-like API for processes); getopt and optparse (command-line processing); and others.

Administrative Tools

Following are some miscellaneous module-related exports:

error

An alias for the built-in OSError exception. Raised for os module-related errors. The accompanying value is a pair containing the numeric error code from errno and the corresponding string, as would be printed by the C function perror(). See the module errno in the Python Library Reference for names of the error codes defined by the underlying OS.

When exceptions are classes, this exception carries two attributes: errno, the value of the C errno variable; and strerror, the corresponding error message from strerror(). For exceptions that involve a file pathname (e.g., chdir(), unlink()), the exception instance also contains the attribute filename, the filename passed in.

name

Name of OS-specific modules whose names are copied to the top level of os (e.g., posix, nt, mac, os2, ce, or java). See also platform in the section The sys Module.

path

Nested module for portable pathname-based utilities. For example, os.path.split is a platform-independent directory name tool that internally uses an appropriate platform-specific call.

Portability Constants

This section describes tools for parsing and building directory and search path strings portably. They are automatically set to the appropriate value for the platform on which a script is running.

curdir

String used to represent current directory (e.g., . for Windows and POSIX, : for Macintosh).

pardir

String used to represent parent directory (e.g., .. for POSIX, :: for Macintosh).

sep

String used to separate directories (e.g., / for Unix, \ for Windows, or : for Macintosh).

altsep

Alternative separator string or None (e.g., / for Windows).

extsep

The character that separates the base filename from the extension (e.g., .).

pathsep

Character used to separate search path components, as in the PATH and PYTHONPATH shell variable settings (e.g., ; for Windows, : for Unix).

defpath

Default search path used by os.exec*p* calls if there is no PATH setting in the shell.

linesep

String used to terminate lines on current platform (e.g., \n for POSIX, \r for Mac OS, and \r\n for Windows). Do not use this when writing lines in text mode files—use the autotranslation of '\n'.

Shell Commands

These functions run programs in the underlying operating system. In Python 2.X, this module has os.popen2/3/4 calls, which have been replaced by subprocess.Popen in Python 3.0.

system(cmd)

Executes a command string cmd in a subshell process. Returns the exit status of the spawned process. Unlike popen, does not connect to cmd’s standard streams via pipes. Hints: add an & at the end of cmd to run the command in the background on Unix (e.g., os.system('python main.py &')); use a DOS start command to launch programs easily on Windows (e.g., os.system('start file.html')).

startfile(filepathname)

Starts a file with its associated application. Acts like double-clicking the file in Windows Explorer or giving the filename as an argument to a DOS start command (e.g., with os.system('start
path')). The file is opened in the application with which its extension is associated; the call does not wait, and does not generally pop up a DOS console window. Windows only, new in version 2.0.

popen(cmd, mode='r', buffering=None)

Opens a pipe to or from the shell command string cmd, to send or capture data. Returns an open file object, which can be used to either read from cmd’s standard output stream stdout (mode 'r') or write to cmd’s standard input stream stdin (mode 'w'). For example, dirlist = os.popen('ls −l *.py').read() reads the output of a Unix ls command.

cmd is any command string you can type at your system’s console or shell prompt. mode can be 'r' or 'w' and defaults to 'r'. buffering is the same as in the built-in open function. cmd runs independently; its exit status is returned by the resulting file object’s close method, except that None is returned if exit status is 0 (no errors). Use readline() or iteration to read output line by line.

Python 2.X also has variants popen2, popen3, and popen4 to connect to other streams of the spawned command (e.g., popen2 returns a tuple (child_stdin, child_stdout)). In Python 3.0, these calls are removed; use subprocess.Popen() instead. The subprocess module in version 2.4 and later allows scripts to spawn new processes, connect to their input/output/error pipes, and obtain their return codes. See the Python Library Reference.

spawn*(args...)

A family of functions for spawning programs and commands. See Process Control, as well as the Python Library Reference for more details. The subprocess module is a generally preferred alternative to these calls.

Environment Tools

These attributes export execution environment and context.

environ

The shell environment variable dictionary-like object. os.environ['USER'] is the value of variable USER in the shell (equivalent to $USER in Unix and %USER% in DOS). Initialized on program start-up. Changes made to os.environ by key assignment are exported outside Python using a call to C’s putenv and are inherited by any processes that are later spawned in any way, as well as any linked-in C code.

putenv(varname, value)

Sets the shell environment variable named varname to the string value. Affects subprocesses started with system, popen, spawnv, or fork and execv. Assignment to os.environ keys automatically calls putenv (but putenv calls don’t update environ).

getcwd()

Returns the current working directory name as a string.

chdir(path)

Changes the current working directory for this process to path, a directory name string. Future file operations are relative to the new current working directory.

strerror(code)

Returns an error message corresponding to code.

times()

Returns a five-tuple containing elapsed CPU time information for the calling process in floating-point seconds: (user-time, system-time, child-user-time, child-system-time, elapsed-real-time). Also see the section The time Module.

umask(mask)

Sets the numeric umask to mask and returns the prior value.

uname()

Returns OS name tuple of strings: (systemname, nodename, release, version, machine).

File Descriptor Tools

The following functions process files by their descriptors (fd is a file-descriptor integer). os module descriptor-based files are meant for low-level file tasks and are not the same as stdio
file objects returned by the built-in open() function (though os.fdopen and the file object fileno method convert between the two). File objects, not descriptors, should normally be used for most file processing.

close(fd)

Closes file descriptor fd (not a file object).

dup(fd)

Returns duplicate of file descriptor fd.

dup2(fd, fd2)

Copies file descriptor fd to fd2 (close fd2 first if open).

fdopen(fd [, mode [, bufsize]])

Returns a built-in file object (stdio) connected to file descriptor fd (an integer). mode and bufsize have the same meaning as in the built-in open() function (see the section Built-in Functions). A conversion from descriptor-based files to file objects is normally created by the built-in open() function. Hint: use fileobj.fileno to convert a file object to a descriptor.

fstat(fd)

Returns status for file descriptor fd (like stat).

ftruncate(fd, length)

Truncates the file corresponding to file descriptor fd so that it is at most length bytes in size.

isatty(fd)

Returns 1 if file descriptor fd is open and connected to a tty(-like) device.

lseek(fd, pos, how)

Sets the current position of file descriptor fd to pos (for random access). how can be 0 to set the position relative to the start of the file, 1 to set it relative to the current position, or 2 to set it relative to the end.

open(filename, flags [, mode])

Opens a file descriptor-based file and returns the file descriptor (an integer, not an stdio file object). Intended for low-level file tasks only; not the same as the built-in open() function. mode defaults to 0777 (octal), and the current umask value is first masked out. flag is a bitmask: use | to combine both platform-neutral and platform-specific flag constants defined in the os module (see Table 1-18).

pipe()

See the section Process Control.

read(fd, n)

Reads at most n bytes from file descriptor fd and returns those bytes as a string.

write(fd, str)

Writes all bytes in string str to file descriptor fd.

Table 1-18. Sample or-able flags for os.open

	
O_APPEND

	
O_EXCL

	
O_RDONLY

	
O_TRUNC

	
O_BINARY

	
O_NDELAY

	
O_RDWR

	
O_WRONLY

	
O_CREAT

	
O_NOCTTY

	
O_RSYNC

	

	
O_DSYNC

	
O_NONBLOCK

	
O_SYNC

	

File Pathname Tools

The following functions process files by their pathnames (path is a string pathname of a file). See also the section The os.path Module. In Python 2.X, this module also includes temporary file tools that have been replaced with the tempfile module in Python 3.0.

chdir(path)
getcwd()

See the section Environment Tools.

chmod(path, mode)

Changes mode of file path to numeric mode.

chown(path, uid, gid)

Changes owner/group IDs of path to numeric uid/gid.

link(srcpath, dstpath)

Creates a hard link to file src, named dst.

listdir(path)

Returns a list of names of all the entries in the directory path. A fast and portable alternative to the glob module and to running shell listing commands with os.popen. See also module glob for filename expansion.

lstat(path)

Like stat, but does not follow symbolic links.

mkfifo(path [, mode])

Creates a FIFO (a named pipe) identified by string path with access permission given by numeric mode (but does not open it). The default mode is 0666 (octal). The current umask value is first masked out from the mode. FIFOs are pipes that live in the filesystem and can be opened and processed like regular files. FIFOs exist until deleted.

mkdir(path [, mode])

Makes a directory called path, with the given mode. The default mode is 777 (octal).

makedirs(path [, mode])

Recursive directory-creation function. Like mkdir, but makes all intermediate-level directories needed to contain the leaf directory. Throws an exception if the leaf directory already exists or cannot be created. mode defaults to 0777 (octal).

readlink(path)

Returns the path referenced by a symbolic link path.

remove(path)
unlink(path)

Removes (deletes) the file named path. remove is identical to unlink. See rmdir and removedirs, discussed in this list, for removing directories.

removedirs(path)

Recursive directory-removal function. Similar to rmdir, but if the leaf directory is successfully removed, then directories corresponding to the rightmost path segments will be pruned away until either the whole path is consumed or an error is raised. Throws an exception if the leaf directory could not be removed.

rename(srcpath, dstpath)

Renames (moves) file src to name dst.

renames(oldpath, newpath)

Recursive directory- or file-renaming function. Like rename, but creation of any intermediate directories needed to make the new pathname good is attempted first. After the rename, directories corresponding to the rightmost path segments of the old name will be pruned away using removedirs.

rmdir(path)

Removes (deletes) a directory named path.

stat(path)

Runs stat system call for path; returns a tuple of integers with low-level file information (whose items are defined and processed by tools in module stat).

symlink(srcpath, dstpath)

Creates a symbolic link to file src, called dst.

utime(path, (atime, mtime))

Sets file path access and modification times.

access(path, mode)

Consult the Python Library Reference or Unix manpages for details.

walk(top [, topdown=True [, onerror=None] [, followlinks=False]]])

Generates the filenames in a directory tree by walking the tree either top-down or bottom-up. For each directory in the tree rooted at directory top (including top itself), yields a three-tuple (dirpath, dirnames, filenames). dirpath is a string, the path to the directory. dirnames is a list of the names of the subdirectories in dirpath (excluding . and ..). filenames is a list of the names of the nondirectory files in dirpath. Note that the names in the lists do not contain path components. To get a full path (which begins with
top) to a file or directory in dirpath, do os.path.join(dirpath, name).

If optional argument topdown is true or not specified, the triple for a directory is generated before the triples for any of its subdirectories (directories are generated top-down). If topdown is false, the triple for a directory is generated after the triples for all its subdirectories (directories are generated bottom-up). If optional onerror is specified, it should be a function, which will be called with one argument, an os.error instance. By default, will not walk down into symbolic links that resolve to directories; set followlinks to True to visit directories pointed to by symlinks, on systems that support them.

Python 2.X also provides an os.path.walk() call with similar tree-walking functionality, using an event-handler function callback instead of a generator. In Python 3.0, os.path.walk() is removed due to its redundancy; use os.walk() instead. See also module glob for filename expansion.

Process Control

The following functions are used to create and manage processes and programs. Refer also to the section Shell Commands for other ways to start programs and files.

abort()

Sends a SIGABRT signal to the current process. On Unix, the default behavior is to produce a core dump; on Windows, the process immediately returns exit code 3.

execl(path, arg0, arg1,...)

Equivalent to execv(path, (arg0, arg1,...)).

execle(path, arg0, arg1,..., env)

Equivalent to execve(path, (arg0, arg1,...), env).

execlp(path, arg0, arg1,...)

Equivalent to execvp(path, (arg0, arg1,...)).

execve(path, args, env)

Like execv, but the env dictionary replaces the shell variable environment. env must map strings to strings.

execvp(path, args)

Like execv(path, args), but duplicates the shell’s actions in searching for an executable file in a list of directories. The directory list is obtained from os.environ['PATH'].

execvpe(path, args, env)

A cross between execve and execvp. The directory list is obtained from os.environ['PATH'].

execv(path, args)

Executes the executable file path with the command-line argument args, replacing the current program in this process (the Python interpreter). args can be a tuple or a list of strings, and it starts with the executable’s name by convention (argv[0]). This function call never returns, unless an error occurs while starting the new program.

_exit(n)

Exits the process immediately with status n, without performing cleanup. Normally used only in a child process after a fork; the standard way to exit is to call sys.exit(n).

fork()

Spawns a child process (a virtual copy of the calling process, running in parallel); returns 0 in the child and the new child’s process ID in the parent. Not available in standard Windows Python, but is available on Windows in Cygwin Python.

getpid()
getppid()

Returns the process ID of the current (calling) process; getppid() returns the parent process ID.

getuid()
geteuid()

Returns the process’s user ID; geteuid returns the effective user ID.

kill(pid, sig)

Kills the process with ID pid by sending signal sig. See also the signal module for register signal handlers.

mkfifo(path [, mode])

See the section File Pathname Tools (files used for process synchronization).

nice(increment)

Adds increment to process’s “niceness” (i.e., lowers its CPU priority).

pipe()

Returns a tuple of file descriptors (rfd, wfd) for reading and writing a new anonymous (unnamed) pipe. Used for cross-process communication.

plock(op)

Locks program segments into memory. op (defined in <sys./lock.h>) determines which segments are locked.

spawnv(mode, path, args)

Executes program path in a new process, passing the arguments specified in args as a command line. args can be a list or a tuple. mode is a magic operational constant made from the following names: P_WAIT, P_NOWAIT, P_NOWAITO, P_OVERLAY, and P_DETACH. On Windows, roughly equivalent to a fork+execv combination (fork is not yet available on standard Windows Python, though popen and system are). See also the subprocess module for more powerful alternatives.

spawnve(mode, path, args, env)

Like spawnv, but passes the contents of mapping env as the spawned program’s shell environment.

wait()

Waits for completion of a child process. Returns a tuple with child’s ID and exit status.

waitpid(pid, options)

Waits for child process with ID pid to complete. options is 0 for normal use, or os.WNOHANG to avoid hanging if no child status is available. If pid is 0, the request applies to any child in the process group of the current process. See also the process exit status-check functions documented in the Python Library Reference (e.g., WEXITSTATUS(status) to extract the exit code).

The os.path Module

The os.path
module provides additional file directory pathname-related services and portability tools. This is a nested module: its names are nested in the os module within the submodule os.path (e.g., the exists function is obtained by importing os and using os.path.exists).

Most functions in this module take an argument path, the string directory pathname of a file (e.g., "C:\dir1\spam.txt"). Directory paths are generally coded per the platform’s conventions and are mapped to the current working directory if lacking a directory prefix. Hint: forward slashes usually work as directory separators on all platforms. In Python 2.X, this module includes an os.path.walk tool, which has been replaced by os.walk in Python 3.0.

abspath(path)

Returns a normalized absolute version of path. On most platforms, this is equivalent to normpath(join(os.getcwd(), path)).

basename(path)

Same as second half of pair returned by split(path).

commonprefix(list)

Returns longest path prefix (character by character) that is a prefix of all paths in list.

dirname(path)

Same as first half of pair returned by split(path).

exists(path)

True if string path is the name of an existing file path.

expanduser(path)

Returns string that is path with embedded ˜ username expansion done.

expandvars(path)

Returns string that is path with embedded $ environment variables expanded.

getatime(path)

Returns time of last access of path (seconds since the epoch).

getmtime(path)

Returns time of last modification of path (seconds since the epoch).

getsize(path)

Returns size, in bytes, of file path.

isabs(path)

True if string path is an absolute path.

isfile(path)

True if string path is a regular file.

isdir(path)

True if string path is a directory.

islink(path)

True if string path is a symbolic link.

ismount(path)

True if string path is a mount point.

join(path1 [, path2 [, ...]])

Joins one or more path components intelligently (using platform-specific separator conventions between each part).

normcase(path)

Normalizes case of a pathname. Has no effect on Unix; on case-insensitive filesystems, converts to lowercase; on Windows, also converts / to \.

normpath(path)

Normalizes a pathname. Collapses redundant separators and up-level references; on Windows, converts / to \.

realpath(path)

Returns the canonical path of the specified filename, eliminating any symbolic links encountered in the path.

samefile(path1, path2)

Returns true if both pathname arguments refer to the same file or directory.

sameopenfile(fp1, fp2)

Returns true if both file objects refer to the same file.

samestat(stat1, stat2)

Returns true if both stat tuples refer to the same file.

split(path)

Splits path into (head, tail), where tail is the last pathname component and head is everything leading up to tail. Same as tuple (dirname(path), basename(path)).

splitdrive(path)

Splits path into a pair ('drive:', tail) (on Windows).

splitext(path)

Splits path into (root, ext), where the last component of root contains no ., and ext is empty or starts with a ..

walk(path, visitor, data)

An alternative to os.walk in Python 2.X only. Removed in Python 3.0: use os.walk, not os.path.walk.

The re Pattern-Matching Module

The re module is the standard regular expression-matching interface. Regular expression (RE) patterns are specified as strings. This module must be imported.

Module Functions

compile(pattern [, flags])

Compile an RE pattern string into a regular expression object, for later matching. flags (combinable by bitwise | operator) include the following available at the top-level of the re module:

A or ASCII or (?a)

Makes \w, \W, \b, \B, \s, and \S perform ASCII-only matching instead of full Unicode matching. This is only meaningful for Unicode patterns and is ignored for byte patterns. Note that for backward compatibility, the re.U flag still exists (as well as its synonym re.UNICODE and its embedded counterpart, ?u), but these are redundant in Python 3.0 since matches are Unicode by default for strings (and Unicode matching isn’t allowed for bytes).

I or IGNORECASE or (?i)

Case-insensitive matching.

L or LOCALE or (?L)

Makes \w, \W, \b, \B, \s, \S, \d, and \D dependent on the current locale (default is Unicode for Python 3).

M or MULTILINE or (?m)

Matches to each newline, not whole string.

S or DOTALL or (?s)

. matches all characters, including newline.

U or UNICODE or (?u)

Makes \w, \W, \b, \B, \s, \S, \d, and \D dependent on Unicode character properties (new in version 2.0, and superfluous in Python 3).

X or VERBOSE or (?x)

Ignores whitespace in the pattern, outside character sets.

match(pattern, string [, flags])

If zero or more characters at start of string match the pattern string, returns a corresponding MatchObject instance, or None if no match. flags as in compile.

search(pattern, string [, flags])

Scans through string for a location matching pattern; returns a corresponding MatchObject instance, or None if no match. flags as in compile.

split(pattern, string [, maxsplit=0])

Splits string by occurrences of pattern. If capturing () are used in pattern, occurrences of patterns or subpatterns are also returned.

sub(pattern, repl, string [, count=0])

Returns string obtained by replacing the (first count) leftmost nonoverlapping occurrences of pattern (a string or an RE object) in string by repl. repl can be a string or a function called with a single MatchObject argument, which must return the replacement string. repl can also include sequence escapes \1, \2, etc., to use substrings that match groups, or \0 for all.

subn(pattern, repl, string [, count=0])

Same as sub but returns a tuple (new-string, number-of-subs-made).

findall(pattern, string [, flags])

Returns a list of strings giving all nonoverlapping matches of pattern in string. If one or more groups are present in the pattern, returns a list of groups.

finditer(pattern, string [, flags])

Returns an iterator over all nonoverlapping matches for the RE pattern in string (match objects).

escape(string)

Returns string with all nonalphanumeric characters backslashed, such that they can be compiled as a string literal.

Regular Expression Objects

RE objects are returned by the re.compile function and have the following attributes:

flags

The flags argument used when the RE object was compiled.

groupindex

Dictionary of {group-name: group-number} in the pattern.

pattern

The pattern string from which the RE object was compiled.

match(string [, pos [, endpos]])
search(string [, pos [, endpos]])
split(string [, maxsplit=0])
sub(repl, string [, count=0])
subn(repl, string [, count=0])
findall(string [, pos[, endpos]])
finditer(string [, pos[, endpos]])

Same as earlier re module functions, but pattern is implied, and pos and endpos give start/end string indexes for the match.

Match Objects

Match objects are returned by successful match and search
operations, and have the following attributes (see the Python Library Reference for additional attributes omitted here).

pos, endpos

Values of pos and endpos passed to search or match.

re

RE object whose match or search produced this.

string

String passed to match or search.

group([g1, g2,...])

Returns substrings that were matched by parenthesized groups in the pattern. Accepts zero or more group numbers. If one argument, result is the substring that matched the group whose number is passed. If multiple arguments, result is a tuple with one matched substring per argument. If no arguments, returns entire matching substring. If any group number is 0, return value is entire matching string; otherwise, returns string matching corresponding parenthesized group number in pattern (1...N, from left to right). Group number arguments can also be group names.

groups()

Returns a tuple of all groups of the match; groups not participating in the match have a value of None.

groupdict()

Returns a dictionary containing all the named subgroups of the match, keyed by the subgroup name.

start([group]), end([group])

Indexes of start and end of substring matched by group (or entire matched string, if no group). If match object M, M.string[M.start(g):M.end(g)]==M.group(g).

span([group])

Returns the tuple (start(group), end(group)).

expand(template)

Returns the string obtained by doing backslash substitution on the template string template, as done by the sub method. Escapes such as \n are converted to the appropriate characters, and numeric back-references (\1, \2) and named back-references (\g<1>, \g<name>) are replaced by the corresponding group.

Pattern Syntax

Pattern strings are specified by concatenating forms (see Table 1-19), as well as by character class escapes (see Table 1-20). Python character escapes (e.g., \t for tab) can also appear. Pattern strings are matched against text strings, yielding a Boolean match result, as well as grouped substrings matched by subpatterns in parentheses:
>>> import re
>>> patt = re.compile('hello[\t]*(.*)')
>>> mobj = patt.match('hello world!')
>>> mobj.group(1)
'world!'

In Table 1-19, C is any character, R is any regular expression form in the left column of the table, and m and n are integers. Each form usually consumes as much of the string being matched as possible, except for the nongreedy forms (which consume as little as possible, as long as the entire pattern still matches the target string).

Table 1-19. Regular expression pattern syntax

	
Form

	
Description

	
.

	
Matches any character (including newline if DOTALL flag is specified).

	
^

	
Matches start of string (of every line in MULTILINE mode).

	
$

	
Matches end of string (of every line in MULTILINE mode).

	
C

	
Any nonspecial character matches itself.

	
R*

	
Zero or more occurrences of preceding regular expression R (as many as possible).

	
R+

	
One or more occurrences of preceding regular expression R (as many as possible).

	
R?

	
Zero or one occurrence of preceding regular expression R.

	
R{m}

	
Matches exactly m repetitions of preceding regular expression R.

	
R{m,n}

	
Matches from m to n repetitions of preceding regular expression R.

	
R*?, R+?, R??, R{m,n}?

	
Same as *, +, and ?, but matches as few characters/times as possible; nongreedy.

	
[...]

	
Defines character set; e.g., [a-zA-Z] matches all letters (also see Table 1-20).

	
[^...]

	
Defines complemented character set: matches if character is not in set.

	
\

	
Escapes special characters (e.g., *?+|()) and introduces special sequences (see Table 1-20). Due to Python rules, write as \\ or r'\\'.

	
\\

	
Matches a literal \; due to Python string rules, write as \\\\ in pattern, or r'\\'.

	
\number

	
Matches the contents of the group of the same number: (.+) \1 matches “42 42”

	
R|R

	
Alternative: matches left or right R.

	
RR

	
Concatenation: matches both Rs.

	
(R)

	
Matches any RE inside (), and delimits a group (retains matched substring).

	
(?: R)

	
Same as (R) but doesn’t delimit a group.

	
(?= R)

	
Look-ahead assertion: matches if R matches next, but doesn’t consume any of the string (e.g., X (?=Y) matches X if followed by Y).

	
(?! R)

	
Negative look-ahead assertion: matches if R doesn’t match next. Negative of (?=R).

	
(?P<name> R)

	
Matches any RE inside () and delimits a named group (e.g., r'(?P<id>[a-zA-Z_]\ w*)' defines a group named id).

	
(?P=name)

	
Matches whatever text was matched by the earlier group named name.

	
(?#...)

	
A comment; ignored.

	
(?letter)

	
letter is one of a, i, L, m, s, x, or u. Set flag (re.A, re.I, re.L, etc.) for entire RE.

	
(?<= R)

	
Positive look-behind assertion: matches if preceded by a match of fixed-width R.

	
(?<! R)

	
Negative look-behind assertion: matches if not preceded by a match of fixed-width R.

	
(?(id/name)yespattern|nopattern)

	
Will try to match with yespattern if the group with given id or name exists, else with optional nopattern.

In Table 1-20, \b, \B, \d, \D, \s, \S, \w, and \W behave differently depending on flags, and defaults to Unicode in Python 3.0, unless ASCII (?a) is used. Tip: use raw strings (r'\n') to literalize backslashes in Table 1-20 class escapes.

Table 1-20. Regular expression pattern special sequences

	
Sequence

	
Description

	
\number

	
Matches text of the group number (from 1).

	
\A

	
Matches only at the start of the string.

	
\b

	
Empty string at word boundaries.

	
\B

	
Empty string not at word boundary.

	
\d

	
Any decimal digit (like [0–9]).

	
\D

	
Any nondecimal digit character (like [^0–9]).

	
\s

	
Any whitespace character (like [\t\n\r\f\v]).

	
\S

	
Any nonwhitespace character (like [^ \t\n\r\f\v]).

	
\w

	
Any alphanumeric character.

	
\W

	
Any nonalphanumeric character.

	
\Z

	
Matches only at the end of the string.

Object Persistence Modules

Three modules comprise the object persistence interface.

dbm (anydbm in Python 2.X)

Key-based string-only storage files.

pickle (and cPickle in Python 2.X)

Serializes an in-memory object to/from file streams.

shelve

Key-based persistent object stores: pickles objects to/from dbm files.

The shelve module implements persistent object stores. shelve in turn uses the pickle module to convert (serialize) in-memory Python objects to byte-stream strings and the dbm module to store serialized byte-stream strings in access-by-key files.

Note

In Python 2.X, dbm is named anydbm, and the cPickle module is an optimized version of pickle that may be imported directly and is used automatically by shelve, if present. In Python 3.0, cPickle is renamed _pickle and is automatically used by pickle if present—it need not be imported directly and is acquired by shelve.

Also note that in Python 3.0 the Berkeley DB (a.k.a. bsddb) interface for dbm is no longer shipped with Python itself, but is a third-party open source extension which must be installed separately (see the Python 3.0 Library Reference for resources).

dbm and shelve Modules

dbm is an access-by-key filesystem: strings are stored and fetched by their string keys. The dbm module selects the keyed-access file implementation in your Python interpreter and presents a dictionary-like API for scripts. A persistent object shelve is used like a simple dbm file, except that the dbm module is replaced by shelve, and the stored value can be almost any kind of Python object (though keys are still strings). In most respects, dbm files and shelves work like dictionaries that must be opened before use, and closed after making changes; all mapping operations and some dictionary methods work.

import shelve
import dbm

Gets whatever dbm support library is available: dbm.bsd, dbm.gnu, dbm.ndbm, or dbm.dumb.

open(…)
file = shelve.open(filename
 [, flag='c'
 [, protocol=None
 [, writeback=False]]])
file = dbm.open(filename
 [, flag='r'
 [, mode]])

Creates a new or opens an existing dbm file.

flag is the same in shelve and dbm (shelve passes it on to dbm). It can be 'r' to open an existing database for reading only (dbm default); 'w' to open an existing database for reading and writing; 'c' to create the database if it doesn’t exist (shelve default); or 'n', which will always create a new empty database. The dbm.dumb module (used by default in 3.0 if no other library is installed) ignores flag—the database is always opened for update and is created if it doesn’t exist.

For dbm, the optional mode argument is the Unix mode of the file, used only when the database has to be created. It defaults to octal 0o666.

For shelve, the protocol argument is passed on from shelve to pickle. It gives the pickling protocol number (described ahead) used to store shelved objects; it defaults to 0 in Python 2.6, and to 2 in Python 3.0. By default, changes to objects fetched from shelves are not automatically written back to disk. If the optional writeback parameter is set to True, all entries accessed are cached in memory, and written back at close time; this makes it easier to mutate mutable entries in the shelve, but can consume memory for the cache, making the close operation slow because all accessed entries are written back.

file['key'] = value

Store: creates or changes the entry for 'key'. Value is a string for dbm, or an arbitrary object for shelve.

value = file['key']

Fetch: loads the value for the 'key' entry. For shelve, reconstructs object in memory.

count = len(file)

Size: returns the number of entries stored.

index = file.keys()

Index: fetches the stored keys (can use in a for or other iteration context).

found = file.has_key('key')

Query: sees if there’s an entry for 'key'.

del file['key']

Delete: removes the entry for 'key'.

file.close()

Manual close; required to flush updates to disk for some underlying dbm interfaces.

pickle Module

The pickle
interface converts nearly arbitrary in-memory Python objects to/from serialized byte-streams. These byte-streams can be directed to any file-like object that has the expected read/write methods. Unpickling re-creates the original in-memory object (with the same value, but a new identity [address]).

See the prior note about Python 2.X’s cPickle and Python 3.0’s _pickle optimized modules. Also see the makefile method of socket objects for shipping serialized objects over networks.

Pickling interfaces

P = pickle.Pickler(fileobject [, protocol=None])

Makes a new pickler, for saving to an output file object.

P.dump(object)

Writes an object onto the pickler’s file/stream.

pickle.dump(object, fileobject [, protocol=None])

Combination of the previous two: pickles object onto file.

string = pickle.dumps(object [, protocol=None])

Returns pickled representation of object as a string (a bytes string in Python 3.0).

Unpickling interfaces

U = pickle.Unpickler(fileobject, encoding="ASCII", errors="strict")

Makes unpickler, for loading from input file object.

object = U.load()

Reads object from the unpickler’s file/stream.

object = pickle.load(fileobject, encoding="ASCII", errors="strict")

Combination of the previous two: unpickles object from file.

object = pickle.loads(string, encoding="ASCII", errors="strict")

Reads object from a character string (a bytes string in Python 3.0).

Usage notes

	In Python 3.0, files used to store pickled objects should always be opened in binary mode for all protocols, because the pickler produces bytes strings, and text mode files do not support writing bytes (text mode files encode and decode Unicode text in 3.0).

	In Python 2.6, files used to store pickled objects must be opened in binary mode for all pickle protocols >= 1, to suppress line-end translations in binary pickled data. Protocol 0 is ASCII-based, so its files may be opened in either text or binary mode, as long as they are done so consistently.

	fileobject is an open file object, or any object that implements file object attributes called by the interface. Pickler calls the file write method with a string argument. Unpickler calls the file read method with a byte-count and readline without arguments.

	protocol is an optional argument that selects a format for pickled data, available in both the Pickler constructor and the module’s dump and dumps convenience functions. This argument takes a value 0...3, where higher protocol numbers are generally more efficient, but may also be incompatible with unpicklers in earlier Python releases. The default protocol number in Python 3.0 is 3, which cannot be unpickled by Python 2.X. The default protocol in Python 2.6 is 0, which is less efficient but most portable. Protocol −1 automatically uses the highest protocol supported. When unpickling, protocol is implied by pickled data contents.

	The unpickler’s encoding and errors optional keyword-only arguments are available in Python 3.0 only. They are used to decode 8-bit string instances pickled by Python 2.X. These default to 'ASCII' and 'strict', respectively.

	Pickler and Unpickler are exported classes that may be customized by subclassing. See the Python Library Reference for available methods.

The tkinter GUI Module and Tools

tkinter
(named Tkinter in Python 2.X, and a module package in Python 3.0) is a portable graphical user interface (GUI) construction library shipped with Python as a standard library module. tkinter provides an object-based interface to the open source Tk library and implements native look and feel for Python-coded GUIs on Windows, X-Windows, and Mac OS. It is portable, simple to use, well documented, widely used, mature, and well supported. Other portable GUI options for Python such as wxPython and PyQT are third-party extensions with richer widget sets but generally more complex coding requirements.

tkinter Example

In tkinter scripts, widgets are customizable classes (e.g., Button, Frame), options are keyword arguments (e.g., text="press"), and composition refers to object embedding, not pathnames (e.g., Label(top,...)):
from tkinter import * # widgets, constants

def msg(): # callback handler
 print('hello stdout...')

top = Frame() # make a container
top.pack()
Label(top, text="Hello world").pack(side=TOP)
widget = Button(top, text="press", command=msg)
widget.pack(side=BOTTOM)
top.mainloop()

tkinter Core Widgets

Table 1-21
lists the primary widget classes in the tkinter module. These are true Python classes that can be subclassed and embedded in other objects. To create a screen device, make an instance of the corresponding class, configure it, and arrange it with one of the geometry manager interface methods (e.g., Button(text='hello').pack()). In addition to Table 1-21’s classes, the tkinter module provides a large set of predefined names (a.k.a. constants) used to configure widgets (e.g., RIGHT, BOTH, YES); these are automatically loaded from tkinter.constants (Tkconstants in Python 2.X).

Table 1-21. Module tkinter core widget classes

	
Widget class

	
Description

	
Label

	
Simple message area

	
Button

	
Simple labeled pushbutton widget

	
Frame

	
Container for attaching and arranging other widget objects

	
Toplevel, Tk

	
Top-level windows managed by the window manager

	
Message

	
Multiline text-display field (label)

	
Entry

	
Simple single-line text entry field

	
Checkbutton

	
Two-state button widget, used for multiple-choice selections

	
Radiobutton

	
Two-state button widget, used for single-choice selections

	
Scale

	
A slider widget with scalable positions

	
PhotoImage

	
Image object for placing full-color images on other widgets

	
BitmapImage

	
Image object for placing bitmap images on other widgets

	
Menu

	
Options associated with a Menubutton or top-level window

	
Menubutton

	
Button that opens a Menu of selectable options/submenus

	
Scrollbar

	
Bar for scrolling other widgets (e.g., Listbox, Canvas, Text)

	
Listbox

	
List of selection names

	
Text

	
Multiline text browse/edit widget, support for fonts, etc.

	
Canvas

	
Graphics drawing area: lines, circles, photos, text, etc.

	
OptionMenu

	
Composite: pull-down selection list

	
PanedWindow

	
A multipane window interface

	
LabelFrame

	
A labeled frame widget

	
Spinbox

	
A multiple selection widget

	
ScrolledText

	
Python 2.X name (available in module tkinter.scrolledtext in Python 3.0); Composite: text with attached scrollbar

	
Dialog

	
Python 2.X name (available in module tkinter.dialog in Python 3.0); Old: common dialog maker (see newer common dialog calls in the next section)

Common Dialog Calls

Module tkinter.messagebox (tkMessageBox in Python 2.X)

showinfo(title=None, message=None, **options)
showwarning(title=None, message=None, **options)
showerror(title=None, message=None, **options)
askquestion(title=None, message=None, **options)
askokcancel(title=None, message=None, **options)
askyesno(title=None, message=None, **options)
askretrycancel(title=None, message=None, **options)

Module tkinter.simpledialog (tkSimpleDialog in Python 2.X)

askinteger(title, prompt, **kw)
askfloat(title, prompt, **kw)
askstring(title, prompt, **kw)

Module tkinter.colorchooser (tkColorChooser in Python 2.X)

askcolor(color = None, **options)

Module tkinter.filedialog (tkFileDialog in Python 2.X)

class Open
class SaveAs
class Directory
askopenfilename(**options)
asksaveasfilename(**options)
askopenfile(mode="r", **options)
asksaveasfile(mode="w", **options)
askdirectory(**options)

The common dialog call options are defaultextension (added to filename if not explicitly given), filetypes (sequence of (label, pattern) tuples), initialdir (initial directory, remembered by classes), initialfile (initial file), parent (window in which to place the dialog box), and title (dialog box title).

Additional tkinter Classes and Tools

Table 1-22 lists some commonly used tkinter interfaces and tools beyond the core widget class and standard dialog set.

Table 1-22. Additional tkinter tools

	
Tool category

	
Available tools

	
tkinter linked-variable classes

	
StringVar, IntVar, DoubleVar, BooleanVar (in tkinter module)

	
Geometry management methods

	
pack, grid, place widget object methods, plus configuration options in module

	
Scheduled callbacks

	
Widget after, wait, and update methods; file I/O callbacks

	
Other tkinter tools

	
Clipboard access; bind/Event low-level event processing widget object methods; widget config options; modal dialog box support

	
tkinter extensions (search the Web)

	
PMW: more widgets; PIL: images; tree widgets, font support, drag-and-drop, tix widgets, ttk themed widgets, etc.

Tcl/Tk-to-Python/tkinter Mappings

Table 1-23 compares Python’s tkinter API to the base Tk library as exposed by the Tcl language. In general, Tcl’s command strings map to objects in the Python language. Specifically, in Python’s tkinter, the Tk GUI interface differs from Tcl in the following ways:

Creation

Widgets are created as class instance objects by calling a widget class.

Masters (parents)

Parents are previously created objects, passed to widget class constructors.

Widget options

Options are constructor or config keyword arguments, or indexed keys.

Operations

Widget operations (actions) become tkinter widget class object methods.

Callbacks

Callback handlers are any callable object: function, method, lambda, class with __call__ method, etc.

Extension

Widgets are extended using Python class inheritance mechanisms.

Composition

Interfaces are constructed by attaching objects, not by concatenating names.

Linked variables

Variables associated with widgets are tkinter class objects with methods.

Table 1-23. Tk-to-tkinter mappings

	
Operation

	
Tcl/Tk

	
Python/tkinter

	
Creation

	
frame .panel

	
panel = Frame()

	
Masters

	
button .panel.quit

	
quit = Button(panel)

	
Options

	
button .panel.go -fg black

	
go = Button(panel, fg='black')

	
Configure

	
.panel.go config -bg red

	
go.config(bg='red') go['bg'] = 'red'

	
Actions

	
.popup invoke

	
popup.invoke()

	
Packing

	
pack .panel -side left -fill x

	
panel.pack(side=LEFT, fill=X)

Internet Modules and Tools

This section summarizes Python’s support for Internet scripting.

Commonly Used Library Modules

Following are summaries of some of the more commonly used modules in the Python Internet modules set. This is just a representative sample; see the Python Library Reference for a more complete list.

socket

Low-level network communications support (TCP/IP, UDP, etc.). Interfaces for sending and receiving data over BSD-style sockets: socket.socket() makes an object with socket call methods (e.g., object.bind()). Most protocol and server modules use this module internally.

socketserver (SocketServer in Python 2.X)

Framework for general threading and forking network servers.

xdrlib

Encodes binary data portably (also see socket modules earlier in this list).

select

Interfaces to Unix and Windows select function. Waits for activity on one of N files or sockets. Commonly used to multiplex among multiple streams or to implement timeouts. Works only for sockets on Windows, not files.

cgi

Server-side CGI script support: cgi.FieldStorage parses the input stream; cgi.escape applies HTML escape conventions to output streams. To parse and access form information: after a CGI script calls form=cgi.FieldStorage(), form is a dictionary-like object with one entry per form field (e.g., form["name"].value is form field name text).

urllib.request (urllib, urllib2 in Python 2.X)

Fetches web pages and server script outputs from their Internet addresses (URLs): urllib.request.urlopen(url) returns file with read methods; also urllib.request.urlretrieve(remote, local). Supports HTTP, FTP, gopher, and local file URLs.

urllib.parse (urlparse in Python 2.X)

Parses URL string into components. Also contains tools for escaping URL text: urllib.parse.quote_plus(str) does URL escapes for text inserted into HTML output streams.

ftplib

FTP (file transfer protocol) modules. ftplib provides interfaces for Internet file transfers in Python programs. After ftp=ftplib.FTP('sitename'), ftp has methods for login, changing directories, fetching/storing files and listings, etc. Supports binary and text transfers; works on any machine with Python and an Internet connection.

poplib, imaplib, smtplib

POP, IMAP (mail fetch), and SMTP (mail send) protocol modules.

email package

Parses and constructs email messages with headers and attachments. Also contains MIME support.

http.client
(httplib in Python 2), nntplib, telnetlib

HTTP (web), NNTP (news), and Telnet protocol client modules.

http.server (CGIHTTPServer and SimpleHTTPServer in Python 2.X)

HTTP request server implementations.

xml package, html package (htmllib in Python 2.X)

Parse MXML documents and HTML web page contents. xml package supports DOM, SAX, and ElementTree parsing models.

xmlrpc
package (xmlrpclib in Python 2.X)

XML-RPC remote method call protocol.

uu, binhex, base64, binascii, quopri

Encodes and decodes binary (or other) data transmitted as text.

Table 1-24 lists some of these modules by protocol type.

Table 1-24. Selected Python Internet modules by protocol

	
Protocol

	
Common function

	
Port number

	
Python module

	
HTTP

	
Web pages

	
80

	
http.client,
urllib.request,
xmlrpc.*

	
NNTP

	
Usenet news

	
119

	
nntplib

	
FTP data default

	
File transfers

	
20

	
ftplib, urllib.request

	
FTP control

	
File transfers

	
21

	
ftplib, urllib.request

	
SMTP

	
Sending email

	
25

	
smtplib

	
POP3

	
Fetching email

	
110

	
poplib

	
IMAP4

	
Fetching email

	
143

	
imaplib

	
Telnet

	
Command lines

	
23

	
telnetlib

Other Standard Library Modules

This section documents a handful of additional standard library modules. See the Python Library Reference for details on all built-in tools, and the PyPI websites (described in Assorted Hints) or your favorite web search engine for third-party modules and tools.

The math Module

The math module exports C standard math library tools for use in Python. Table 1-25 lists this module’s exports; see the Python Library Reference for more details. Also see the cmath module in the Python library for complex number tools and the NumPy system for advanced numeric work.

Table 1-25. math module exports in Python 3.0 and 2.6

	
acos

	
acosh

	
asin

	
asinh

	
atan

	
atan2

	
atanh

	
ceil

	
copysign

	
cos

	
cosh

	
degrees

	
e

	
exp

	
fabs

	
factorial

	
floor

	
fmod

	
frexp

	
fsum

	
hypot

	
isinf

	
isnan

	
ldexp

	
log

	
log10

	
log1p

	
modf

	
pi

	
pow

	
radians

	
sin

	
sinh

	
sqrt

	
tan

	
tanh

	
trunc

	
	
	

The time Module

Following is a partial list of time module exports. See the Python Library Reference for more details.

clock()

Returns the CPU time or real time since the start of the process or since the first call to clock(). Precision and semantics is platform-dependent (see Python manuals). Returns seconds expressed as a floating-point number. Useful for benchmarking and timing alternative code sections.

ctime(secs)

Converts a time expressed in seconds since the epoch to a string representing local time (e.g., ctime(time())). The argument is optional and defaults to the current time if omitted.

time()

Returns a floating-point number representing UTC time in seconds since the epoch. On Unix, epoch is 1970. May have better precision than clock() on some platforms (see Python manuals).

sleep(secs)

Suspends the process’s (calling thread’s) execution for secs seconds. secs can be a float to represent fractions of seconds.

The datetime Module

Tools for subtracting dates, adding days to dates, and so on. See the Python Library Reference for details.
>>> from datetime import date, timedelta
>>> date(2009, 12, 17) - date(2009, 11, 29)
datetime.timedelta(18)

>>> date(2009, 11, 29) + timedelta(18)
datetime.date(2009, 12, 17)

Threading Modules

Threads are lightweight processes that share global memory (i.e., lexical scopes and interpreter internals) and all run in parallel within the same process. Python thread modules work portably across platforms.

_thread (named thread in Python 2.X)

Python’s basic and low-level thread interface module. Tools to start, stop, and synchronize functions run in parallel. To spawn a thread: _thread.start_new_thread(function, argstuple). Function start_new_thread is a synonym for start_new (which is documented as obsolete in 3.0). To synchronize threads, use thread locks: lock=thread.allocate_lock(); lock.acquire(); update-objects; lock.release().

threading

Module threading builds upon thread, to provide customizable threading-oriented classes: Thread, Condition, Semaphore, Lock, etc. Subclass Thread to overload run action method. This is more powerful than _thread, but also requires more code in simpler use cases.

queue (named Queue in Python 2.X)

A multiproducer, multiconsumer FIFO queue of objects implementation, especially useful for threaded applications (see the Python Library Reference). Locks get and put operations to synchronize access to data on the queue.

Binary Data Parsing

The struct
module provides an interface for parsing and constructing packed binary data as strings. Commonly used in conjunction with the rb and wb binary-mode file open modes. See the Python Library Reference for format datatype and endian codes.

string = struct.pack(format, v1, v2, ...)

Returns a string (a bytes in 3.0 and a str in 2.6) containing the values v1, v2, etc., packed according to the given format string. The arguments must match the values required by the format’s type codes exactly. The format string can specify the endian format of the result in its first character, as well as repeat counts for individual type codes.

tuple = struct.unpack(format, string)

Unpacks the string (a bytes in 3.0 and a str in 2.6) according to the given format string.

struct.calcsize(fmt)

Returns size of the struct (and hence of the string) corresponding to the given format.

Following is an example showing how to pack and unpack data using struct in Python 3.0 (Python 2 uses normal str strings instead of bytes):
>>> import struct
>>> data = struct.pack('4si', 'spam', 123)
>>> data
b'spam{\x00\x00\x00'
>>> x, y = struct.unpack('4si', data)
>>> x, y
(b'spam', 123)

>>> open('data', 'wb').write(struct.pack('>if', 1, 2.0))
8
>>> open('data', 'rb').read()
b'\x00\x00\x00\x01@\x00\x00\x00'

>>> struct.unpack('>if', open('data', 'rb').read())
(1, 2.0)

Python Portable SQL Database API

Python’s portable SQL database API provides script portability between different vendor-specific SQL database packages. For each vendor, install the vendor-specific extension module, but write your scripts according to the portable database API. Your database scripts will largely continue working unchanged after migrating to a different underlying vendor package.

Note that most database extension modules are not part of the Python standard library; they must be fetched and installed separately. The SQLite embedded in-process relational database package is included with Python as standard library module
sqlite3, intended for program data storage and prototyping. See also the section Object Persistence Modules for simpler storage alternatives.

API Usage Example

The following uses the SQLite standard library module. Usage for enterprise-level database such as MySQL, PostgreSQL, and Oracle are similar, but require different connection parameters and installation of extension modules:
>>> from sqlite3 import connect
>>> conn = connect(r'C:\users\mark\misc\temp.db')
>>> curs = conn.cursor()

>>> curs.execute('create table jobs (name, title, pay)')
>>> prefix = 'insert into jobs values '
>>> curs.execute(prefix + "('Bob', 'dev', 100)")
>>> curs.execute(prefix + "('Sue', 'dev', 120)")

>>> curs.execute("select * from jobs where pay > 100")
>>> for (name, title, pay) in curs.fetchall():
... print(name, title, pay)
...
Sue dev 120

>>> curs.execute("select name, pay from jobs").fetchall()
[('Bob', 100), ('Sue', 120)]

>>> query = "select * from jobs where title = ?"
>>> curs.execute(query, ('dev',)).fetchall()
[('Bob', 'dev', 100), ('Sue', 'dev', 120)]

Module Interface

This and the following sections provide a partial list of exports; see the full API specification at http://www.python.org for details omitted here.

connect(parameters...)

Constructor for connection objects; represents a connection to the database. Parameters are vendor-specific.

paramstyle

String giving type of parameter marker formatting (e.g., qmark = ? style).

Warning

Exception raised for important warnings such as data truncations.

Error

Exception that is the base class of all other error exceptions.

Connection Objects

Connection objects respond to the following methods:

close()

Closes the connection now (rather than when __del__ is called).

commit()

Commits any pending transactions to the database.

rollback()

Rolls database back to the start of any pending transaction; closing a connection without committing the changes first will cause an implicit rollback.

cursor()

Returns a new cursor object for submitting SQL strings through the connection.

Cursor Objects

Cursor objects represent database cursors, used to manage the context of a fetch operation.

description

Sequence of seven-item sequences; each contains information describing one result column: (name, type_code, display_size, internal_size, precision, scale, null_ok).

rowcount

Specifies the number of rows that the last execute* produced (for DQL statements like select) or affected (for DML statements like update or insert).

callproc(procname [,parameters])

Calls a stored database procedure with the given name. The sequence of parameters must contain one entry for each argument that the procedure expects; result is returned as a modified copy of the inputs.

close()

Closes the cursor now (rather than when __del__ is called).

execute(operation [,parameters])

Prepares and executes a database operation (query or command); parameters can be specified as a list of tuples to insert multiple rows in a single operation (but executemany is preferred).

executemany(operation, seq_of_parameters)

Prepares a database operation (query or command) and executes it against all parameter sequences or mappings in sequence seq_of_parameters. Similar to multiple execute calls.

fetchone()

Fetches the next row of a query result set, returning a single sequence, or None when no more data is available.

fetchmany([size=cursor.arraysize])

Fetches the next set of rows of a query result, returning a sequence of sequences (e.g., a list of tuples). An empty sequence is returned when no more rows are available.

fetchall()

Fetches all (remaining) rows of a query result, returning them as a sequence of sequences (e.g., a list of tuples).

Type Objects and Constructors

Date(year,month,day)

Constructs an object holding a date value.

Time(hour,minute,second)

Constructs an object holding a time value.

None

SQL NULL values are represented by the Python None on input and output.

Python Idioms and Hints

This section lists common Python coding tricks and general usage hints. Consult the Python Library Reference and Python Language Reference (http://www.python.org/doc/) for further information on topics mentioned here.

Core Language Hints

	S[:]
makes a top-level (shallow) copy of any sequence; copy.deepcopy(X) makes full copies; list(L) and D.copy() copy lists and dictionaries.

	L[:0]=[X,Y,Z] inserts items at front of list L, in-place.

	L[len(L):]=[X,Y,Z], L.extend([X,Y,Z]), and L
+=
[X,Y,Z] all insert multiple items at the end of a list, in-place.

	L.append(X) and X=L.pop() can be used to implement in-place stack operations, where the end of the list is the top of the stack.

	Use for key in D.keys(): to iterate through dictionaries, or simply for key in D: in version 2.2 and later. In Python 3.0 these two forms are equivalent, since keys is an iterable view.

	Use for key in sorted(D): to iterate over dictionary keys in sorted fashion in version 2.4 and later; the form K=D.keys(); K.sort(); for key in K: also works in Python 2.X but not Python 3.0, since keys results are view objects, not lists.

	X=A or B or None assigns X to the first true object among A and B, or None if both are false (i.e., 0 or empty).

	X,Y = Y,X swaps the values of X and Y.

	red, green, blue = range(3) assigns integer series.

	Use try/finally statements to ensure that arbitrary termination code is run; especially useful around locking calls (acquire before the try, release in the finally).

	Use with/as statements to guarantee that object-specific termination code is run; for objects that support the context manager protocol (e.g., file auto-close, tread lock auto-release).

	Wrap iterables in a list() call to view all their results interactively in Python 3; this includes range(), map(), zip(), filter(), dict.keys(), and more.

Environment Hints

	Use if __name__ == '__main__': to add self-test code or a call to a main function at the bottom of module files; true only when file is run, not when it is imported as a library component.

	To load file contents in a single expression, use data=open('filename').read().

	To iterate through text files by lines, use for line in file: in version 2.2 and later (in older versions, use for line in file.readlines():).

	To retrieve command-line arguments, use sys.argv.

	To retrieve shell environment settings, use os.environ.

	The standard streams are: sys.stdin, sys.stdout, and sys.stderror.

	To return a list of files matching a given pattern, use: glob.glob('pattern').

	To return a list of files and subdirectories on a path, use: os.listdir('.').

	To walk an entire tree of directories, use os.walk in Python 3.0 and 2.6 (os.path.walk is also available in Python 2.6 only).

	To run shell commands within Python scripts, you can use os.system('cmdline'), output=os.popen('cmdline', 'r').read(). The latter form reads the spawned program’s standard output, and may also be used to read line-by-line.

	Other streams of a spawned command are available via the subprocess module in Python 3.0, and the os.popen2/3/4 calls in Python 2.X only. The os.fork/os.exec* calls have similar effect on Unix-like platforms.

	To make a file an executable script on Unix-like platforms, add a line like #!/usr/bin/env python or #!/usr/local/bin/python at the top and give the file executable permissions with a chmod command. On Windows, files can be clicked and run directly due to the registry.

	The dir([object]) function is useful for inspecting attribute namespaces; print(object.__doc__) often gives documentation.

	The help([object]) function provides interactive help for modules, functions, types, and more; help(str) gives help on the str type; help("module") gives help on modules even if they have not yet been imported; and help("topic") gives help on keywords and other help topics (use "topics" for a list of help topics).

	print() and input() (known as print and raw_input() in Python 2.X) use sys.stdout and sys.stdin streams: assign to file-like objects to redirect I/O internally, or use the print(..., file=F) form in Python 3.0 (or the print >> F, ... form in Python 2.X).

Usage Hints

	Use from __future__ import
featurename to enable experimental language features that might break existing code.

	Intuition about performance in Python programs is usually wrong: always measure before optimizing or migrating to C. Use the profile and time modules (as well as cProfile and timeit).

	See modules unittest (a.k.a. PyUnit) and doctest for automated testing tools shipped with the Python standard library; unittest is a class framework; doctest scans documentation strings for tests and outputs.

	See the pydoc library module and script shipped with Python for extraction and display of documentation strings associated with modules, functions, classes, and methods.

	See the section Warnings Framework, as well as -W in the section Command-Line Options, for details about turning off future-deprecation warnings emitted by the interpreter.

	See Distutils, PyInstaller, py2exe, eggs, and other tools for Python program distribution options.

	See PyInstaller and py2exe for turning Python programs into .exe files for Windows.

	See NumPy, SciPy, and related packages for extensions that turn Python into a numeric-scientific-programming tool with vector objects, etc.

	See ZODB and others for full-featured OODB support that allows Python native objects to be stored by key, and SQLObject, SQLAlchemy, and others for object relational mappers that allow classes to be used with relational tables.

	See SWIG (among others) for a tool that can automatically generate glue code for using C and C++ libraries within Python scripts.

	See IDLE for a development GUI shipped with Python, with syntax-coloring text editors, object browsers, debugging, etc.; see also PythonWin, Komodo, Eclipse, NetBeans, and others for additional IDE options.

	See Emacs help for tips on editing/running code in the Emacs text editor. Most other editors support Python as well (e.g., auto-indenting, coloring), including VIM and IDLE; see the editors’ page at www.python.org.

	Porting to Python 3.0: use the −3 command-line option in Python 2.6 to issue incompatibility warnings, and see the 2to3 script which automatically converts much 2.X code to run under 3.X Python.

Assorted Hints

	Important websites to refer to:
http://www.python.org

The Python home page

http://oreilly.com

The publisher’s home page

http://www.python.org/pypi

Additional third-party Python tools

http://www.rmi.net/~lutz

The author’s site

	Python philosophy: import this.

	You should say spam and eggs instead of foo and bar in Python examples.

	Always look on the bright side of life.

Index

A note on the digital index

A link in an index entry is displayed as the section title in which that entry appears. Because some sections have multiple index markers, it is not unusual for an entry to have several links to the same section. Clicking on any link will take you directly to the place in the text in which the marker appears.

A

abs function, Built-in Functions

all function, Built-in Functions

any function, Built-in Functions

apply function (Python 2.6), Python 2.6 built-ins not supported by Python 3.0

arguments, command line, Program Specification

ArithmeticError class, Superclasses (Categories)

as clauses, The import Statement, The from Statement, The with Statement

ascii function, Built-in Functions

assert statement, The assert Statement

AssertionError class, Specific Exceptions Raised

assignment statement, The Assignment Statement

AttributeError class, Specific Exceptions Raised

attributes, Qualified Names: Object Namespaces, Class objects provide default behavior, Pseudoprivate Attributes, Built-in Attributes

built-in, Built-in Attributes

pseudo-private, Pseudoprivate Attributes

augmented assignments, Augmented assignment

augmented binary methods, Right-side binary methods

B

-b Python option, Python Options

-B Python option, Python Options

backslash escape sequences, Literals and creation

base classes, The class Statement

BaseException class, Superclasses (Categories)

basestring function (Python 2.6), Python 2.6 built-ins not supported by Python 3.0

bin function, Built-in Functions

binary data encoding, byte and bytearray strings

binary methods, For Numbers (Binary Operators)

blocks, Syntax Rules

bool function, Built-in Functions

Boolean operations, Operations by Category

Boolean type, Boolean

break statement, The break Statement

buffer function (Python 2.6), Python 2.6 built-ins not supported by Python 3.0

buffering, Built-in Functions

built-in attributes, Built-in Attributes

built-in exceptions, Built-in Exceptions, Python 2.X Built-in Exceptions, Superclasses (Categories), Specific Exceptions Raised, Warning Category Exceptions, Warnings Framework, Python 2.X Built-in Exceptions

Python 2.X, Python 2.X Built-in Exceptions

specific exceptions raised, Specific Exceptions Raised

superclasses, Superclasses (Categories)

warning category exceptions, Warning Category Exceptions

warnings framework, Warnings Framework

built-in functions, Built-in Functions, Python 2.6 built-ins not supported by Python 3.0

built-in types, Specific Built-in Types, Type Conversions, Numbers, Strings, The original string module, Lists, Other generators and comprehensions, Dictionaries, Operations, Tuples, Files, Notes, Sets, Other Common Types, Other Common Types, Boolean, Type Conversions

Boolean type, Boolean

dictionaries, Dictionaries, Operations

files, Files, Notes

lists, Lists, Other generators and comprehensions

numbers, Numbers

program-unit types, Other Common Types

sets, Sets

strings, Strings, The original string module

tuples, Tuples

type conversions, Type Conversions

types type, Other Common Types

bytearray function, Built-in Functions

bytearray string type, Strings, Literals and creation, byte and bytearray methods, byte and bytearray strings

bytearray method, byte and bytearray methods

Unicode and, byte and bytearray strings

bytes function, Built-in Functions

bytes string type, Strings, Literals and creation, byte and bytearray methods, byte and bytearray strings

byte method, byte and bytearray methods

Unicode and, byte and bytearray strings

BytesWarning class, Warning Category Exceptions

C

-c command specification, Program Specification

callable function (Python 2.6), Python 2.6 built-ins not supported by Python 3.0

capwords function, Module Functions and Classes

cgi module, Commonly Used Library Modules

chdir function, Environment Tools

chr function, Built-in Functions

class privates, Class privates

class statement, The class Statement, Class decorators in Python 2.6 and 3.0, Metaclasses, Class objects provide default behavior

class decorators, Class decorators in Python 2.6 and 3.0

metaclasses, Metaclasses

classes, Class objects provide default behavior, New Style Classes, New Style Classes

classic classes, New Style Classes

new style classes, New Style Classes

classmethod function, Built-in Functions

closefd, Built-in Functions

cmp function (Python 2.6), Python 2.6 built-ins not supported by Python 3.0

code examples, Using Code Examples

coerce function (Python 2.6), Python 2.6 built-ins not supported by Python 3.0

command-line options, Command-Line Options, Command-Line Option Variables

option variables, Command-Line Option Variables

comments, Syntax Rules

comparisons, Operations by Category

compile function, Built-in Functions

complex function, Built-in Functions

composition, tkinter Example

compound statements, Specific Statements

concatenated string constants, Literals and creation

constructors, For All Types (see __init__ method)

context managers, File context managers, Multiple context managers in Python 3.1, For Context Managers

operator overloading methods for, For Context Managers

Python 3.1, Multiple context managers in Python 3.1

continue statement, The continue Statement

control flow, Syntax Rules

conventions, Conventions

core language hints, Core Language Hints

core widgets, tkinter, tkinter Core Widgets

D

-d Python option, Python Options

dbm module, dbm and shelve Modules

decorators, Function and method decorators, Class decorators in Python 2.6 and 3.0

def statement, The def Statement, Function and method decorators, The def Statement, Python 3.0 keyword-only arguments, Python 3.0 function annotations, lambda expressions, Defaults and attributes, Function and method decorators

argument formats, The def Statement

defaults and attributes, Defaults and attributes

function and method decorators, Function and method decorators

lambda expressions, lambda expressions

Python 3.0 function annotations, Python 3.0 function annotations

Python 3.0 keyword-only arguments, Python 3.0 keyword-only arguments

del statement, The del Statement

delattr function, Built-in Functions

DeprecationWarning class, Warning Category Exceptions

descriptors, For Descriptors, File Descriptor Tools

file descriptor tools, File Descriptor Tools

overloading methods for, For Descriptors

dict function, Built-in Functions

dictionaries, Dictionaries, Operations, Dictionaries, Literals and creation, Operations

changes, Python 2.X to 3.0, Dictionaries

literals, Literals and creation

operations, Operations

dictionary comprehensions, Other generators and comprehensions

dir function, Built-in Functions

divmod function, Built-in Functions

documentation strings (docstrings), Syntax Rules

E

-E Python option, Python Options

else clauses, The if Statement, The try Statement

email package, Commonly Used Library Modules

encoding, Built-in Functions

enumerate function, Built-in Functions

environ variable, Environment Tools

Environment class, Superclasses (Categories)

environment hints, Environment Hints

environment tools, Environment Tools

environment variables, Environment Variables

EOFError class, Specific Exceptions Raised

errors, Built-in Functions

eval function, Built-in Functions

except clauses, The try Statement

Exception class, Superclasses (Categories), Python 2.X Built-in Exceptions

Python 2.X, Python 2.X Built-in Exceptions

exception names, Name conventions

exceptions, The try Statement, The raise Statement, Class exceptions, Built-in Exceptions

built-in exceptions, Built-in Exceptions (see built-in exceptions)

class exceptions, Class exceptions

exec statement (Python 2), Python 2.X Statements

execfile function (Python 2.6), Python 2.6 built-ins not supported by Python 3.0

expression operators, Operators and Precedence, Operators and Precedence, Operator Usage Notes

precedence, Operators and Precedence

usage notes, Operator Usage Notes

expression statement, The Expression Statement

F

file descriptor tools, File Descriptor Tools

file function (Python 2.6), Python 2.6 built-ins not supported by Python 3.0

file pathname tools, File Pathname Tools

files, Files, Notes, Files, Files, Input files, Output files, Any files, Attributes (all read-only), File context managers, Notes

any files (operations), Any files

attributes, Attributes (all read-only)

file context managers, File context managers

file function, Files

input files, Input files

notes, Notes

open() function, Files

output files, Output files

filter function, Built-in Functions

finally clauses, The try Statement

float function, Built-in Functions

FloatingPointError class, Specific Exceptions Raised

for loops, nested in list comprehensions, List comprehension expressions

for statement, The for Statement

format function, Built-in Functions

Formatter class, Module Functions and Classes

from statement, The from Statement

frozenset function, Built-in Functions

frozenset() function, Literals and creation

ftplib module, Commonly Used Library Modules

functions, Call syntax, The def Statement, The def Statement, Built-in Functions

built-in functions, Built-in Functions (see built-in functions)

call syntax, Call syntax

definition, The def Statement

FutureWarning class, Warning Category Exceptions

G

generator expressions, Generator expressions

GeneratorExit class, Specific Exceptions Raised

generators, Generators and iterators

getattr function, Built-in Functions

getcwd function, Environment Tools

__getitem__ method, Generators and iterators

global statement, The global Statement

globals function, Built-in Functions

H

hasattr function, Built-in Functions

hash function, Built-in Functions

help function, Built-in Functions

hex function, Built-in Functions

hints, Python Idioms and Hints, Assorted Hints

html package, Commonly Used Library Modules

http.client module, Commonly Used Library Modules

http.server module, Commonly Used Library Modules

I

-i Python option, Python Options

id function, Built-in Functions

if statement, The if Statement

imaplib module, Commonly Used Library Modules

imp.reload() function, The import Statement

__import__ function, Built-in Functions

import statement, The import Statement

ImportError class, Specific Exceptions Raised

ImportWarning class, Warning Category Exceptions

IndentationError class, Specific Exceptions Raised

IndexError class, Specific Exceptions Raised

indexing, Indexing: S[i]

inheritance, Inheritance rules

__init__.py file, Package imports

__init__ method, For All Types

input function, Built-in Functions

input function (Python 2.6), Python 2.6 built-ins not supported by Python 3.0

instances, Instance objects are generated from classes

int function, Built-in Functions

intern function (Python 2.6), Python 2.6 built-ins not supported by Python 3.0

Internet modules, Internet Modules and Tools, Commonly Used Library Modules

IOError class, Specific Exceptions Raised

is* string methods, Content tests

isinstance function, Built-in Functions

issubclass function, Built-in Functions

iter function, Built-in Functions

__iter__ method, Generators and iterators

iterators, The for Statement, Generators and iterators

J

Jython import statement, The import Statement

K

KeyboardInterrupt class, Specific Exceptions Raised

KeyError class, Specific Exceptions Raised

keys() methods, Dictionaries

L

lambda expressions, lambda expressions

len function, Built-in Functions

list function, Built-in Functions

lists, Lists, Other generators and comprehensions, Literals and creation, Operations, List comprehension expressions, Generator expressions

generator expressions, Generator expressions

list comprehension expressions, List comprehension expressions

literals, Literals and creation

operations, Operations

locals function, Built-in Functions

long function (Python 2.6), Python 2.6 built-ins not supported by Python 3.0

LookupError class, Superclasses (Categories)

M

-m module specification, Program Specification

maketrans function, Module Functions and Classes

map function, List comprehension expressions, Built-in Functions

list comprehensions and, List comprehension expressions

mapping operations, Operations by Category

match objects, Match Objects

max function, Built-in Functions

MemoryError class, Specific Exceptions Raised

memoryview function, Built-in Functions, Python 3.0 built-ins not supported by Python 2.6

Python 2.X, Python 3.0 built-ins not supported by Python 2.6

metaclasses, Metaclasses

methods, Call syntax, The class Statement, Class objects provide default behavior, For Numbers (Binary Operators), Right-side binary methods

binary methods, For Numbers (Binary Operators), Right-side binary methods

augmented, Right-side binary methods

call syntax, Call syntax

self arguments, The class Statement

min function, Built-in Functions

module privates, Module privates

modules, Standard Library Modules

mutable sequence operations, Operations by Category

N

NameError class, Specific Exceptions Raised

namespaces, Namespace and Scope Rules, Statically Nested Scopes, Namespace and Scope Rules, Qualified Names: Object Namespaces, Qualified Names: Object Namespaces, Unqualified Names: Lexical Scopes, Statically Nested Scopes, Instance objects are generated from classes

attributes, Qualified Names: Object Namespaces

lexical scopes, Unqualified Names: Lexical Scopes

object namespaces, Qualified Names: Object Namespaces

qualified and unqualified namespaces, Namespace and Scope Rules

statically nested scopes, Statically Nested Scopes

newline, Built-in Functions

next function, Built-in Functions

__next__ method, Generator expressions, Generators and iterators

nntplib module, Commonly Used Library Modules

non-ASCII character encoding, Unicode support in Python 3.0

None, Other Common Types, Defaults and attributes, The return Statement, Type Objects and Constructors

nonlocal statement, The nonlocal Statement

NotImplementedError class, Specific Exceptions Raised

number types, Numbers, Operations, Decimal and fraction, Other numeric types, For Numbers (Binary Operators), Augmented binary methods, For Numbers (Other Operations)

decimal and fraction, Decimal and fraction

operations, Operations

operator overloading methods for, For Numbers (Binary Operators), Augmented binary methods, For Numbers (Other Operations)

binary types, For Numbers (Binary Operators), Augmented binary methods

third-party types, Other numeric types

numeric operations, Operations by Category

O

object function, Built-in Functions

object persistence modules, Object Persistence Modules, Usage notes, dbm and shelve Modules, pickle Module

dbm and shelve modules, dbm and shelve Modules

pickle module, pickle Module

oct function, Built-in Functions

OOP (object-oriented programming), Object-Oriented Programming, New Style Classes, Class objects provide default behavior, Class objects provide default behavior, Instance objects are generated from classes, Inheritance rules, Pseudoprivate Attributes, New Style Classes

attributes, Class objects provide default behavior, Pseudoprivate Attributes

pseudo-private, Pseudoprivate Attributes

classes, Class objects provide default behavior, New Style Classes

new style classes, New Style Classes

inheritance, Inheritance rules

instances, Instance objects are generated from classes

open function, Files, Built-in Functions, Python 2.6 built-ins not supported by Python 3.0

Python 2.6, Python 2.6 built-ins not supported by Python 3.0

operational variables (environment), Operational Variables

operations (types), Operations by Category

operator overloading methods, Operator Overloading Methods, Methods in Python 2.X only, For All Types, For Collections (Sequences, Mappings), For Collections (Sequences, Mappings), For Numbers (Binary Operators), Augmented binary methods, For Numbers (Other Operations), For Descriptors, For Context Managers, Methods in Python 3.0 only

for all types, For All Types

for binary operators, For Numbers (Binary Operators), Augmented binary methods

for collections, For Collections (Sequences, Mappings)

for context managers, For Context Managers

for descriptors, For Descriptors

for mappings, For Collections (Sequences, Mappings)

for numbers, For Numbers (Other Operations)

Python 2.X methods, Methods in Python 3.0 only

ord function, Built-in Functions

os module, The os System Module, The os.path Module, Administrative Tools, Portability Constants, Shell Commands, Environment Tools, File Descriptor Tools, File Pathname Tools, Process Control, The os.path Module

administrative tools, Administrative Tools

environment tools, Environment Tools

file descriptor tools, File Descriptor Tools

file pathname tools, File Pathname Tools

os.path module, The os.path Module

portability constants, Portability Constants

process control, Process Control

shell commands, Shell Commands

OSError class, Specific Exceptions Raised

OverflowError class, Specific Exceptions Raised

P

package imports, Package imports

pass statement, The pass Statement

pattern syntax, Pattern Syntax

PendingDeprecationWarning class, Warning Category Exceptions

pickle module, pickle Module

popen function, Shell Commands

poplib module, Commonly Used Library Modules

pow function, Built-in Functions

precedence of expression operators, Operators and Precedence

print function, Built-in Functions, Python 3.0 built-ins not supported by Python 2.6

Python 2.X, Python 3.0 built-ins not supported by Python 2.6

print statement, The print Statement, Python 2.X print statements

Python 2.X, Python 2.X print statements

process control, Process Control

program specification, Program Specification

programs, starting, Program Specification

property function, Built-in Functions

putenv function, Environment Tools

Python 2.X, Python 2.X print statements, Python 2.X Statements, Methods in Python 3.0 only, Python 2.X Built-in Functions, Python 2.X Built-in Exceptions

built-in exceptions, Python 2.X Built-in Exceptions

built-in functions, Python 2.X Built-in Functions

operator overloading methods for, Methods in Python 3.0 only

print statement, Python 2.X print statements

statements, Python 2.X Statements

Python 3.0 Unicode support, Unicode support in Python 3.0

Python options, Python Options

Python programming language, Introduction

Python versions, Introduction

Q

quotes, Literals and creation

R

raise statement, The raise Statement, Python 2.X raise statement forms, Class exceptions

class exceptions, Class exceptions

range function, Built-in Functions

raw strings, Literals and creation

raw_input function (Python 2.6), Python 2.6 built-ins not supported by Python 3.0

re module, The re Pattern-Matching Module, Pattern Syntax, Module Functions, Regular Expression Objects, Match Objects, Pattern Syntax

match objects, Match Objects

module functions, Module Functions

pattern syntax, Pattern Syntax

regular expression objects, Regular Expression Objects

reduce function (Python 2.6), Python 2.6 built-ins not supported by Python 3.0

ReferenceError class, Specific Exceptions Raised

reload function (Python 2.6), Python 2.6 built-ins not supported by Python 3.0

repr function, Built-in Functions

return statement, The return Statement

reversed function, Built-in Functions

round function, Built-in Functions

RuntimeError class, Specific Exceptions Raised

RuntimeWarning class, Warning Category Exceptions

S

-s Python option, Python Options

-S Python option, Python Options

scopes, Namespace and Scope Rules, Statically Nested Scopes, Unqualified Names: Lexical Scopes, Statically Nested Scopes

lexical scopes, Unqualified Names: Lexical Scopes

statically nested scopes, Statically Nested Scopes

scriptfilename specification, Program Specification

select module, Commonly Used Library Modules

self argument, The class Statement

sequence converters, Type Conversions

sequence operations, Operations by Category, Indexing: S[i]

notes, Indexing: S[i]

set function, Built-in Functions

set type, Other numeric types

setattr function, Built-in Functions

sets, Other generators and comprehensions, Sets, Literals and creation, Operations

literals, Literals and creation

operations, Operations

set comprehensions, Other generators and comprehensions

shell commands, Shell Commands

shelve module, dbm and shelve Modules

slice function, Built-in Functions

slicing, Slicing: S[i:j]

smtplib module, Commonly Used Library Modules

socket module, Commonly Used Library Modules

socketserver module, Commonly Used Library Modules

sorted function, Built-in Functions

spawn* functions, Shell Commands

SQL database API, Python Portable SQL Database API, Type Objects and Constructors, API Usage Example, Module Interface, Connection Objects, Cursor Objects, Type Objects and Constructors

API usage example, API Usage Example

connection objects, Connection Objects

cursor objects, Cursor Objects

module interface, Module Interface

type objects and constructors, Type Objects and Constructors

standard library modules, Standard Library Modules, Other Standard Library Modules, Binary Data Parsing, The math Module, The time Module, The datetime Module, Threading Modules, Binary Data Parsing

binary data parsing, Binary Data Parsing

datetime module, The datetime Module

math module, The math Module

threading modules, Threading Modules

time module, The time Module

StandardError class, Python 2.X Built-in Exceptions

Python 2.X, Python 2.X Built-in Exceptions

startfile function, Shell Commands

starting programs, Program Specification

statements, Name Rules, Specific Statements, Python 2.X Statements, Specific Statements, Specific Statements, The Assignment Statement, The Expression Statement, The print Statement, The if Statement, The while Statement, The for Statement, The pass Statement, The break Statement, The continue Statement, The del Statement, The def Statement, Function and method decorators, The return Statement, The yield Statement, The global Statement, The nonlocal Statement, The import Statement, The from Statement, The class Statement, The try Statement, The raise Statement, Python 2.X raise statement forms, The assert Statement, The with Statement, Python 2.X Statements, Python 2.X Statements

assert statement, The assert Statement

assignment statement, The Assignment Statement

break statement, The break Statement

class statement, The class Statement

compound statements, Specific Statements

continue statement, The continue Statement

def statement, The def Statement, Function and method decorators

del statement, The del Statement

exec statement (Python 2), Python 2.X Statements

expression statement, The Expression Statement

for statement, The for Statement

from statement, The from Statement

global statement, The global Statement

if statement, The if Statement

import statement, The import Statement

name rules, Name Rules

nonlocal statement, The nonlocal Statement

pass statement, The pass Statement

print statement, The print Statement

Python 2.X statements, Python 2.X Statements

raise statement, The raise Statement, Python 2.X raise statement forms

return statement, The return Statement

suites, Specific Statements

try statement, The try Statement

while statement, The while Statement

with statement, The with Statement

yield statement, The yield Statement

statically nested scopes, Statically Nested Scopes

staticmethod function, Built-in Functions

StopIteration class, Specific Exceptions Raised

str function, Built-in Functions

string constants, Constants

string module, The string Module, Constants

strings, Strings, Unicode support in Python 2.X, Strings, Strings, Strings, Strings, Literals and creation, Literals and creation, Literals and creation, Literals and creation, Operations, String formatting, String formatting method, String formatting expression, String formatting method, Template string substitution, String methods, byte and bytearray methods, byte and bytearray methods, byte and bytearray methods, Searching, Splitting and joining, Formatting, Content tests, The original string module, Unicode Strings, Unicode support in Python 2.X, Unicode Strings, Type Conversions

\ (backslash) escape sequences, Literals and creation

' and " (quotes), Literals and creation

byte method, byte and bytearray methods

bytearray method, byte and bytearray methods

bytearray string type, Strings

bytes string type, Strings

content tests, Content tests

formatting, String formatting, String formatting method, String formatting expression, String formatting method, Formatting

formatting expression, String formatting expression

formatting method, String formatting method

operations, Operations

searching, Searching

splitting and joining, Splitting and joining

str string type, Strings, byte and bytearray methods, Unicode Strings

str method, byte and bytearray methods

unicode and, Unicode Strings

string constant escape codes, Literals and creation

string converters, Type Conversions

string literals, Literals and creation

string methods, String methods

string module, The original string module

template string substitution, Template string substitution

unicode string type, Strings

Unicode strings, Unicode Strings, Unicode support in Python 2.X

sum function, Built-in Functions

super function, Built-in Functions

superclasses, The class Statement

syntax, Name Rules

name rules, Name Rules

syntax rules, Syntax Rules

SyntaxError class, Specific Exceptions Raised

SyntaxWarning class, Warning Category Exceptions

sys module, The sys Module

argv, The sys Module

builtin_module_names, The sys Module

byteorder, The sys Module

copyright, The sys Module

displayhook function, The sys Module

dllhandle, The sys Module

dont_write_bytecode, The sys Module

excepthook function, The sys Module

exc_info(), The sys Module

executable, The sys Module

exec_prefix, The sys Module

exit function, The sys Module

getcheckinterval(), The sys Module

getdefaultencoding function, The sys Module

getfilesystemencoding(), The sys Module

getrecursionlimit(), The sys Module

getrefcount(object), The sys Module

getsizeof function, The sys Module

hexversion, The sys Module

intern(string), The sys Module

last_type, last_value, and last_traceback, The sys Module

maxsize, The sys Module

maxunicode, The sys Module

modules (sys module dictionary), The sys Module

path, The sys Module

platform, The sys Module

prefix, The sys Module

ps1, The sys Module

ps2, The sys Module

setcheckinterval function, The sys Module

setdefaultencoding function, The sys Module

setprofile function, The sys Module

setrace function, The sys Module

setrecursionlimit function, The sys Module

stderr, The sys Module

stdin, The sys Module

stdout, The sys Module

tracebacklimit, The sys Module

version, The sys Module

version_module, The sys Module

winver, The sys Module

_getframe, The sys Module

__stdin__, __stdout__, and __stderr__, The sys Module

system function, Shell Commands

SystemError class, Specific Exceptions Raised

SystemExit class, Specific Exceptions Raised

T

TabError class, Specific Exceptions Raised

telnetlib module, Commonly Used Library Modules

Template class, Module Functions and Classes

template string substitution, Template string substitution

third-party numeric types, Other numeric types

throw method, The yield Statement

tkinter module, The tkinter GUI Module and Tools, Tcl/Tk-to-Python/tkinter Mappings, tkinter Example, tkinter Core Widgets, Module tkinter.messagebox (tkMessageBox in Python 2.X), Additional tkinter Classes and Tools, Tcl/Tk-to-Python/tkinter Mappings

additional classes and tools, Additional tkinter Classes and Tools

common dialog calls, Module tkinter.messagebox (tkMessageBox in Python 2.X)

core widgets, tkinter Core Widgets

example, tkinter Example

Tcl/Tk-to-Python/tkinter mappings, Tcl/Tk-to-Python/tkinter Mappings

try statement, The try Statement

tuple function, Built-in Functions

tuples, Tuples

type conversions, built-in types, Type Conversions

type function, Built-in Functions

TypeError class, Specific Exceptions Raised

U

-u Python option, Python Options

UnboundLocalError class, Specific Exceptions Raised

unichr function (Python 2.6), Python 2.6 built-ins not supported by Python 3.0

unicode function (Python 2.6), Python 2.6 built-ins not supported by Python 3.0

unicode string type, Strings, Literals and creation

Unicode strings, Unicode Strings, Unicode support in Python 2.X, Unicode support in Python 3.0, byte and bytearray strings, Unicode support in Python 2.X

bytes and bytearray, byte and bytearray strings

Python 2.X support, Unicode support in Python 2.X

support in Python 3.0, Unicode support in Python 3.0

UnicodeEncodeError and UnicodeDecodeError classes, Specific Exceptions Raised

UnicodeError class, Specific Exceptions Raised

UnicodeTranslateError class, Specific Exceptions Raised

UnicodeWarning class, Warning Category Exceptions

urllib.parse module, Commonly Used Library Modules

urllib.request module, Commonly Used Library Modules

usage hints, Usage Hints

user-defined names, rules for, Name Rules

UserWarning class, Warning Category Exceptions

uu, binhex, base64, binascii, and quopri modules, Commonly Used Library Modules

V

-v Python option, Python Options

-V Python option, Python Options

ValueError class, Specific Exceptions Raised

vars function, Built-in Functions

W

-W Python option, Python Options

Warning class, Warning Category Exceptions

warnings.warn function, Warnings Framework

websites, Assorted Hints

while statement, The while Statement

whitespace, Syntax Rules

widgets, tkinter Example

WindowsError class, Specific Exceptions Raised

with statement, The with Statement

X

-x Python option, Python Options

xdrlib module, Commonly Used Library Modules

xml package, Commonly Used Library Modules

xmlrpc package, Commonly Used Library Modules

xrange function (Python 2.6), Python 2.6 built-ins not supported by Python 3.0

Y

yield statement, The yield Statement

Z

-0 (zero) Python option, Python Options

-00 (zero zero) Python option, Python Options

ZeroDivisionError class, Specific Exceptions Raised

zip function, Built-in Functions

About the Author

Mark Lutz is the world leader in Python training, the author of Python's earliest and best-selling texts, and a pioneering figure in the Python community since 1992. He is also the author of O'Reilly's Programming Python, 3rd Edition and Python Pocket Reference, 3rd Edition. Mark began teaching Python classes in 1997, and has instructed more than 200 Python training sessions as of 2007. Mark also has BS and MS degrees in Computer Science and 25 years of software development experience.Whenever Mark gets a break from spreading the Python word, he leads an ordinary, average life with his kids in Colorado. Mark can be reached by email at , or on the web at http://www.rmi.net/~lutz.

SPECIAL OFFER: Upgrade this ebook with O’Reilly

Upgrade this ebook today for $4.99 at oreilly.com and get access to additional DRM-free formats, including PDF and EPUB, along with free lifetime updates.

[image: Fourth Edition]

images/calibre_cover.jpg

images/00002.jpg

images/00001.png

